2

let $A\in\mathbb{R}^{m\times n}$ with $m\geq n$. ¿Is it true that rank $A$ is equal to rank $A^tA$?. How show this?

Thanks!

yemino
  • 592

1 Answers1

1

Counterexample $$A={1\choose0}\quad A^TA=(1)$$

Actually, if $m\neq n$, then range of $A$ is subspace of $\mathbb R^m$ while range of $A^TA$ is subspace of $\mathbb R^n$.

Shuchang
  • 9,988