Define $y_n=x_n-x$. You will find $\lim_{n\rightarrow\infty}(2y_{n+1}-y_n)=0$
Response to Andre's comment
@AndreNicolas
I agree the above line is not a rigorous proof. So here is the whole proof.
$\lim_{n\rightarrow\infty}(2y_{n+1}-y_n)=0$, so
$\forall \epsilon>0$, $\exists N$ s.t. $\forall n>N, |2y_{n+1}-y_n|<\epsilon$
Define $A=|y_N|$, so, $|y_{N+1}|<(A+\epsilon)/2$
Then, it is not hard to prove through mathematical induction that
$$
\forall \text{positive integer} k, |y_{N+k}|<\frac{A}{2^k}+\sum_{i=1}^k \frac{\epsilon}{2^i}< \frac{A}{2^k} + \epsilon
$$
Now define $M=\lceil \log_2(A/\epsilon)\rceil$, then $\forall n>N+M, |y_n|<2\epsilon$
Thus $\lim_{n\rightarrow\infty}y_n=0. \quad \blacksquare $