WLOG, by linearity, we assume that $\lim_{n}y_n =0$.
First we will show that $\limsup_n x_n<\infty$ and $\liminf_n x_n<\infty$, by contradiction.
Set $k_n$ the first time $|x_{k_n}|>M$. Then,
$$|y_{k_n}|=|x_{k_n-1}+2x_{k_n} |>|2x_{k_n} |-|x_{k_n-1}|>M$$
Now taking $k_n\rightarrow \infty$ we obtain a contradiction.
Also, it is easy to rule out that $\limsup_n x_n<0$ and $\liminf_n x_n>0$.
Set $A=\max ( \limsup_n x_n,-\liminf_n x_n)$. Assume that $A>0$, and, by symmetry, WLOG take $0\neq s_1=\limsup_n x_n>-\liminf_n x_n$. And, choose $k_n$ such that $x_{k_n}\rightarrow s_1$.
So,
$$y_{k_n}-2x_{k_n}=x_{k_n-1} $$
Taking $k_n\rightarrow \infty$ we find $\lim_nx_{k_n-1}=-2s_1 $. Which gives $$-2s_1\geq \liminf_n x_n \Rightarrow 0<2s_1\leq -\liminf_n x_n$$ a contradiction, hence $A=0$. Therefore,
$$\limsup_n x_n=-\liminf_n x_n=0$$
$\blacksquare$