We have the followings:
$\sin(\frac{\pi}{1})=\frac{\sqrt{0}}{\sqrt{1}}$
$\sin(\frac{\pi}{2})=\frac{\sqrt{1}}{\sqrt{1}}$
$\sin(\frac{\pi}{3})=\frac{\sqrt{3}}{\sqrt{4}}$
$\sin(\frac{\pi}{4})=\frac{\sqrt{2}}{\sqrt{4}}$
$\sin(\frac{\pi}{5})=\frac{\sqrt{5-\sqrt{5}}}{\sqrt{8}}$
Question: Is the value of $\sin({\frac{\pi}{n}})$ expressible by fractions, radicals and natural numbers for each given $n$? If not, for which $n$ can we prove this non-expressibility?