I know there is lots of topics about intersection of two vector subspaces and basis but i still dont fully understand how we should handle these question. So this is my homework:
Suppose U and W are subspaces of $R^3:\\$ $U=[(1,0,-1),(0,1,1)]\\W=[(2,4,0),(0,0,\sqrt{3})]\\$
Find a basis of $U\cap W \\$
So i know $U \cap W$ -> $a_1*(1,0,-1)+a_2*(0,1,1)-b_1*(2,4,0)-b_2*(0,0,\sqrt{3})=0\\$ a possible combination of coefficients $a_1=1,a_2=2,b_1=\frac12,b_2=-\sqrt{3}\\$
then i put the $1*(1,0,-1)+2*(0,1,1)$ in a matrix $$ \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ -1 & 2 \\ \end{bmatrix} \\$$
then i bring it to row-achelon form
$$ \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \\ \end{bmatrix} \\$$
so Basis=$\{ (1,0,-1),(0,1,1) \}$ (i m not sure if the last vector should be $(0,1,1)$ or $(0,2,2)) $?
So is the solution correct ?