Let $T_i$ be the $i$th arrival time of Poisson process of arrival rate $\lambda$, given $t>0$, how to calculate $$ E\left(\sum_{i=1}^\infty T_i 1_{\{T_i<t\}}\right) $$ I think since this is equal to $$ E\left(\sum_{i=1}^{N_t} T_i\right) $$ We can try $$ E\left(E\left(\left. \sum_{i=1}^{N} T_i \right|N_t=N\right)\right) =E\left(\sum_{i=1}^{N} E(T_i|N_t=N)\right) $$ But I'm stuck at this step. Also making me more confused is that when I see a similar question on
There is a claim
Given $N_t$, the inter arrival times are uniformly distributed on $[0,t]$. Hence, $T_k∼Beta(k,n−k+1)$
But support of beta distribution is just $[0,1]$, I don't understand why this claim is right.