Let $W$ be a standard, one-dimensional Brownian motion and $0 < T < \infty$. Show that
$$\lim_{\beta \to \infty} \sup_{0\leq t \leq T} |e^{-\beta t }\int_0^t e^{\beta s } dW_s| = 0$$ a.s.
Let $W$ be a standard, one-dimensional Brownian motion and $0 < T < \infty$. Show that
$$\lim_{\beta \to \infty} \sup_{0\leq t \leq T} |e^{-\beta t }\int_0^t e^{\beta s } dW_s| = 0$$ a.s.