$\displaystyle{\Gamma\left(z\right)\mbox{: Gamma function}.\qquad\qquad}
$Euler Reflection Formula:
$\displaystyle{\quad%
\Gamma\left(z\right)\,\Gamma\left(1 - z\right)
=
{\pi \over \sin\left(\pi z\right)}
}$
\begin{align}
{r \choose k}
&=
{r! \over k!\left(r - k\right)!}
=
{1 \over k!}\,{\Gamma\left(r + 1\right) \over \Gamma\left(r - k + 1\right)}
\tag{1}
\end{align}
\begin{align}
{\Gamma\left(r + 1\right) \over \Gamma\left(r - k + 1\right)}
& =
\overbrace{%
{\pi
\over
\sin\left(\pi\left[r + 1\right]\right)
\Gamma\left(1 - \left[1 + r\right]\right)}}
^{\displaystyle{\Gamma\left(r\ + 1\right)}}\ \times
\\[2mm] &
\overbrace{%
{\sin\left(\pi\left[r - k + 1\right]\right)
\Gamma\left(1 - \left[r - k + 1\right]\right) \over \pi}}
^{\displaystyle{1 \over \Gamma\left(r\ - k\ + 1\right)}}
\\[5mm]&=
{1 \over -\sin\left(\pi r\right)\Gamma\left(-r\right)}
\left\{\vphantom{\Large A}%
-\sin\left(\pi\left[r - k\right]\right)\Gamma\left(k - r\right)\right\}
\\[5mm] & =
{\sin\left(\pi\left[r - k\right]\right) \over \sin\left(\pi r\right)}\,
{\left(k - r - 1\right)! \over \left(-r - 1\right)!}
\end{align}
By replacing this result in $\left(1\right)$, we get
\begin{align}
{r \choose k} & =
{\sin\left(\pi\left[r - k\right]\right) \over \sin\left(\pi r\right)}\,
{\left(k - r - 1\right)! \over k!\left(-r - 1\right)!}
\\[5mm]
\implies
{r \choose k}
& =
{\sin\left(\pi\left[r - k\right]\right) \over \sin\left(\pi r\right)}\,
{k - r - 1 \choose k}
\tag{2}
\end{align}
When $k$ is an integer,
$\displaystyle{%
{\sin\left(\pi\left[r - k\right]\right) \over \sin\left(\pi r\right)}\,
}
=
\left(-1\right)^{k}$. Then, $\left(2\right)$ becomes
For $r, k \in {\mathbb Z};\quad r \leq -1$:
$$\color{#ff0000}{\large%
{r \choose k}
\color{#000000}{\ =\ }
\left(-1\right)^{k}{k - r - 1 \choose k}\,,
\qquad
\color{#000000}{k \geq 0\,,\quad r \leq -1}}
\tag{3}
$$
When $k \leq r \leq -1$, we use formula $\left(3\right)$ as follows:
$$
\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{r \choose k}
=
{r \choose r - k}
=
\left(-1\right)^{r - k}
{\left[r - k\right] - r - 1 \choose r - k}
=
\left(-1\right)^{r - k}{-k - 1 \choose r - k}\,,
\qquad
k \leq r \leq -1
\tag{4}
$$
Otherwise, $\displaystyle{{r \choose k} = 0}$ since $\Gamma\left(z\right)$ has poles at $z = 0, -1, -2, \ldots$.
A detailed account of this topic is given in
http://mathworld.wolfram.com/BinomialCoefficient.html