We use the following definition of binomial identities valid for complex $\alpha$ and non-negative integers $n$:
\begin{align*}
\binom{\alpha}{n}=\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}\tag{1}
\end{align*}
which can be found for instance as formula (5.1) in Concrete Mathematics
by R.L. Graham, D.E. Knuth and O. Patashnik.
We obtain
\begin{align*}
\color{blue}{\binom{n+\alpha-1}{n}}&=\frac{(n+\alpha-1)((n+\alpha-1)-1)\cdots(n+\alpha-1-(n-1))}{n!}\tag{2}\\
&=\frac{(n+\alpha-1)((n+\alpha-2)\cdots\alpha}{n!}\\
&=(-1)^n\frac{(-\alpha)(-\alpha-1)\cdots(-\alpha-(n-1))}{n!}\tag{3}\\
&\,\,\color{blue}{=(-1)^n\binom{-\alpha}{n}}\tag{4}
\end{align*}
Comment:
In (2) we use the definition (1).
In (3) we factor out $(-1)^n$.
In (4) we use the definition (1) again.
From (2) and (4) we conclude
\begin{align*}
(1-z)^{-\alpha}=\sum_{n=0}^{\infty}\binom{-\alpha}{n}(-z)^n=\sum_{n=0}^\infty\binom{n+\alpha-1}{n}z^n\qquad\qquad |z|<1
\end{align*}