Context
I’m trying to prove that the largest real root of a polynomial $p_{2}\left ( x, \ell \right )$ is greater than that of $p_{1}\left ( x, \ell \right )$ for all positive integers $\ell> 1$, where both polynomials arise from computing the capacity of $\ell$-constrained DNA composite. The polynomials have integer coefficients, and their largest real roots are close to, but less than, $5$. I’m seeking analytical solutions to compare the largest real roots for general $\ell$.
Polynomial definitions:
- $p_{2}\left ( x, \ell \right )= \sum_{n= 0}^{3\ell}a_{n}x^{n}$: Coefficients defined in three parts:
- Part 1 ($n= 2\ell, \ldots, 3\ell$): $a_{n}= 3a_{n- 1}- a_{n- 2}- a_{n- 3}$, with $a_{3\ell}= 1, a_{3\ell- 1}= -2, a_{3\ell- 2}= -7$.
- Part 2 ($n= \ell, \ldots, 2\ell- 1$): $a_{n}= a_{n}^{\ell- 1}+ a_{n- 2}^{\ell- 1}+ a_{n- 2}^{\ell- 2}$, where $a_{n}^{\ell- 1}$ refers to coefficients of $p_{2}\left ( x, \ell- 1 \right )$.
- Part 3 ($n= 0, \ldots, \ell- 1$): $a_{n}= \left ( -1 \right )^{\ell}b_{n}, \quad b_{n}= -2b_{n- 1}+ b_{n- 2}- 2$, with $b_{0}= -2, b_{1}= 2$.
- Example for $\ell= 3$: $$p_{2}\left ( x, 3 \right )= \bbox[5px, #F0FFF0]{x^{9}- 2x^{8}- 7x^{7}- 20x^{6}}\bbox[5px, #FFF0F0]{- 43x^{5}- 28x^{4}- 21x^{3}}\bbox[5px, #FFFFE0]{+ 8x^{2}- 2x+ 2}$$ Largest real root: $\lambda_{2}\left ( 3 \right )\approx 4.787559836555051$
- Example for $\ell= 4$: $$p_{2}\left ( x, 4 \right )= \bbox[5px, #F0FFF0]{x^{12}- 2x^{11}- 7x^{10}- 20x^{9}- 51x^{8}}\bbox[5px, #FFF0F0]{- 108x^{7}- 79x^{6}- 78x^{5}- 47x^{4}}\bbox[5px, #FFFFE0]{+ 16x^{3}- 8x^{2}+ 2x- 2}$$ Largest real root: $\lambda_{2}\left ( 4 \right )\approx 4.9079904984391955$
- Example for $\ell= 5$: $$p_{2}\left ( x, 5 \right )= \bbox[5px, #F0FFF0]{x^{15}- 2x^{14}- 7x^{13}- 20x^{12}- 51x^{11}- 126x^{10}}\bbox[5px, #FFF0F0]{- 265x^{9}- 202x^{8}- 215x^{7}- 178x^{6}- 117x^{5}}\bbox[5px, #FFFFE0]{+ 42x^{4}- 16x^{3}+ 8x^{2}- 2x+ 2}$$ Largest real root: $\lambda_{2}\left ( 5 \right )\approx 4.957983946242159$
- $p_{1}\left ( x, \ell \right )= \sum_{n= 0}^{\ell}a_{n}x^{n}$: $a_{n- 2}= 2a_{n- 1}+ 3a_{n}$, with $a_{\ell}= 1, a_{\ell- 1}= -3$.
Question
It is easy to see that: $$p_{1}\left ( x, \ell \right )- p_{1}\left ( 5, \ell \right )= \left ( x- 5 \right )q_{1}\left ( x, \ell \right ), \quad p_{2}\left ( x, \ell \right )- p_{2}\left ( 5, \ell \right )= \left ( x- 5 \right )q_{2}\left ( x, \ell \right ),$$ with $q_{1}\left ( x, \ell \right ), q_{2}\left ( x, \ell \right )> 0$.
All largest real roots $x_{0}\approx 5- \frac{p\left ( 5, \ell \right )}{{p}'\left ( 5, \ell \right )}$ tend to $5$. So how can we compare them analytically?
I need your help. Thanks a real lot!