In polar code design over binary erasure channels (generated by some subsets of rows of a Kronecker power of $\bbox[5px, #F0FFF0]{X= \begin{bmatrix} 1 & 1\\ 1 & 0\\ \end{bmatrix}}$), the Wang–Chin partial order [arXiv:2304.07667] compares binary strings $a, b\in\left\{ 0, 1 \right\}^{n}$ via: $$I_{0}\left ( x \right )= x^{2}, \quad I_{1}\left ( x \right )= 1- \left ( 1- x \right )^{2}, \quad I_{a_{1}a_{2}\ldots a_{n}}= I_{a_{2}\ldots a_{n}}\left ( I_{a_{1}}\left ( x \right ) \right ),$$ where $a\succcurlyeq b$ if $I_{a}\left ( x \right )\geq I_{b}\left ( x \right )$ for $x\in\left [ 0, 1 \right ]$.
Consider two $6\times 6$ block matrices $A$ and $B$, with $\ell\times\ell$ blocks, forming $6\ell\times 6\ell$ matrices: $$A= \begin{bmatrix} U & L & L & L & U & L\\ L & U & L & L & U & L\\ L & L & U & L & L & U\\ L & L & L & U & L & U\\ U & U & L & L & U & L\\ L & L & U & U & L & U\\ \end{bmatrix}, \quad B= \begin{bmatrix} U & L & L & L & U & U\\ L & U & L & L & U & U\\ L & L & U & L & U & L\\ L & L & L & U & L & U\\ U & U & U & L & U & U\\ U & U & L & U & U & U\\ \end{bmatrix},$$ where $U$ is the nilpotent matrix ($1$s on superdiagonal, $0$s elsewhere) and $L$ is idempotent ($1$s in first column, $0$s elsewhere): $$U= \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0\\ 0 & 0 & 1 & 0 & \cdots & 0\\ 0 & \ddots & 0 & \ddots & 0 & 0\\ 0 & 0 & \cdots & 0 & 1 & 0\\ 0 & 0 & 0 & \ddots & 0 & 1\\ 0 & 0 & 0 & 0 & \cdots & 0\\ \end{bmatrix}_{\ell\times\ell}, \quad L= \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0\\ 1 & 0 & \ddots & 0 & 0 & 0\\ \vdots & 0 & 0 & \ddots & 0 & 0\\ 1 & 0 & 0 & 0 & \cdots & 0\\ 1 & 0 & 0 & 0 & 0 & \cdots\\ 1 & 0 & 0 & \cdots & 0 & 0\\ \end{bmatrix}_{\ell\times\ell}.$$ Goal
Prove that $A$'s capacity (largest real eigenvalue) exceeds $B$'s for all $\ell> 1$, for all $\ell$, using Wang–Chin partial order and matrix decomposition, despite differing minimal polynomial degrees.
Matrix structure:
- "Pattern of $U$" matrices: $$K_{A}= \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 & 0 & 1\\ 1 & 1 & 0 & 0 & 1 & 0\\ 0 & 0 & 1 & 1 & 0 & 1\\ \end{bmatrix}, K_{B}= \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1\\ 0 & 1 & 0 & 0 & 1 & 1\\ 0 & 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 1\\ 1 & 1 & 1 & 0 & 1 & 1\\ 1 & 1 & 0 & 1 & 1 & 1\\ \end{bmatrix}.$$ We have $A= K_{A}\otimes U+ \left ( J- K_{A} \right )\otimes L, B= K_{B}\otimes U+ \left ( J- K_{B} \right )\otimes L$, where $J$ is the all-ones matrix.
- Decomposition for $B$ (via dharr's solution): Similarity transformation yields $A_{2}= {K}'\otimes\left ( U- L \right )+ {J}'\otimes L$, with characteristic polynomial factored into:
- First factor: Degree $\ell$, from $U- L$.
- Second factor: Degree $2\ell$, from $X\otimes\left ( U- L \right ), \bbox[5px, #F0FFF0]{X= \begin{bmatrix} 1 & 1\\ 1 & 0\\ \end{bmatrix}}$.
- Third factor: Degree $3\ell$.
- For $A$, the minimal polynomial containing the largest eigenvalue has degree $\ell$.
Challenge
$A$’s minimal polynomial (degree $\ell$) vs. $B$'s third factor (degree $3\ell$) suggests different eigenvalue structures. Wang–Chin compares equal-length strings recursively, not polynomials of differing degrees.
Questions
Can we compare $A$ and $B$'s capacities by mapping submatrices (e.g., $U- L, L$ blocks) to synthetic channels with string capacities $I_{a_{i}}\left ( x \right )$, then adapt Wang–Chin’s partial order to prove $a\succcurlyeq b$ supporting $A$'s higher capacity?