Question is to prove that :
characteristic and minimal polynomial of $ \left( \begin{array}{cccc} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{array} \right) $ is $x^3-ax^2-bx-c$.
what i have done so far is :
characteristic polynomial of a matrix $A$ is given by $\det(A-xI)$
in case of $A= \left( \begin{array}{cccc} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{array} \right)$ we have $\det(A-xI)=\det\left( \begin{array}{cccc} -x & 0 & c \\ 1 & -x & b \\ 0 & 1 & a-x \end{array} \right)=-(x^3-ax^2-bx-c)$
So, i have got the characteristic polynomial as $x^3-ax^2-bx-c$.
Now, the problem is how do i find minimal polynomial.
As $a,b,c$ are arbitrary, I can not factorize $x^3-ax^2-bx-c$ so as to see which factor gives me minimal polynomial.
I am confused.
please suggest me some hint.
EDIT : This is just after Mr.Will Jagyy's hint :
I have $A= \left( \begin{array}{cccc} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{array} \right)$ then, $A^2= \left( \begin{array}{cccc} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{array} \right)\left( \begin{array}{cccc} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{array} \right)=\left( \begin{array}{cccc} 0 & c & ac \\ 0 & b & c+ab \\ 1 & a & b+a^2 \end{array} \right)$
Now,
$A^2+rA+sI=\left( \begin{array}{cccc} 0 & c & ac \\ 0 & b & c+ab \\ 1 & a & b+a^2 \end{array} \right)+r\left( \begin{array}{cccc} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{array} \right)+s\left( \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)=\left( \begin{array}{cccc} s & c & * \\ r & b+s & * \\ 1& * & * \end{array} \right)$
As element of $3^{rd}$ row $1^{st}$ column is $1$ in above matrix, this can never be $0$
i.e., $A^2+rA+sI$ can never be $0$.
Now, $A+rI=\left( \begin{array}{cccc} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{array} \right)+r\left( \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)=\left( \begin{array}{cccc} r & *& * \\ \color{magenta}{1} & * & * \\ * & \color{magenta}{1} & * \end{array} \right)\neq 0$ if $r\neq 0$
Thus, $A^2+rA+sI\neq 0$ and $A+rI\neq 0$ for any $r,s$.
Thus, minimal polynomial for $A$ can not be of order less than $3$.
Thus, minimal polynomial for $A$ has to be $x^3-ax^2-bx-c$.
I have written this just to make sure i have tried in correct way as i can not write this in a comment.
I would be thankful if there is any other way to proceed further.. Thank you :)