$$S=\sum_{k=0}^{n}\frac{(-1)^k}{k^3+9k^2+26k+24}\binom{n}{k}$$
We have some nice factors,
$$S=\sum_{k=0}^{n}\frac{(-1)^k}{(k+2)(k+3)(k+4)}\binom{n}{k}$$
We can do a partial fraction split,
$$\frac{1}{(k+2)(k+3)(k+4)}=\frac12\cdot\frac{1}{k+2} - \frac{1}{k+3} + \frac12\cdot\frac{1}{k+4}$$
Therefore,
$$S=\frac12\sum_{k=0}^{n}\frac{(-1)^k}{k+2}\binom{n}{k} - \sum_{k=0}^{n}\frac{(-1)^k}{k+3}\binom{n}{k} + \frac12\sum_{k=0}^{n}\frac{(-1)^k}{k+4}\binom{n}{k}$$
Now, consider the binomial expansion of $(1-x)^n$ and multiply by $x^{m-1}$ throughout
$$(1-x)^n \cdot x^{m-1} = \sum_{k=0}^n \binom{n}{k} (-1)^k x^k\cdot x^{m-1} $$
Integrate both sides,
$$\int_0^1(1-x)^n x^{m-1} \,dx= \sum_{k=0}^n \binom{n}{k} (-1)^k \int_0^1 x^{k+m-1}\,dx $$
$$\int_0^1(1-x)^n x^{m-1} \,dx= \sum_{k=0}^n \frac{(-1)^k}{k+m}\binom{n}{k} $$
Using the definition of Beta function to solve the integral on the left,
$$\therefore\boxed{\beta(m,n+1)=\sum_{k=0}^n \frac{(-1)^k}{k+m}\binom{n}{k}}$$
Using the symmetric property,
$$S=\frac12\beta(n+1,2) - \beta(n+1,3) + \frac12\beta(n+1,4)$$
Now simplifying the expression above, by the use of below properties,
$$\beta(n,m)=\frac{\Gamma(n)\Gamma(m)}{\Gamma(n+m+1)}, \Gamma(n+1)=n!\tag1$$
$$
\begin{aligned}
&\implies \frac{1}{2} \cdot \frac{\Gamma(n+1)\Gamma(2)}{\Gamma(n+3)}
- \frac{\Gamma(n+1)\Gamma(3)}{\Gamma(n+4)}
+ \frac{1}{2} \cdot \frac{\Gamma(n+1)\Gamma(4)}{\Gamma(n+5)} \\
&= \Gamma(n+1) \left( \frac{1}{2\Gamma(n+3)} - \frac{2}{\Gamma(n+4)} + \frac{3}{\Gamma(n+5)} \right)
\end{aligned}
$$
$$
\begin{aligned}
\Gamma(n+3) &= (n+2)(n+1)\Gamma(n+1) \\
\Gamma(n+4) &= (n+3)(n+2)(n+1)\Gamma(n+1) \\
\Gamma(n+5) &= (n+4)(n+3)(n+2)(n+1)\Gamma(n+1)
\end{aligned}
$$
$$
{S = \frac{n^2+3n+2}{2(n+1)(n+2)(n+3)(n+4)}}
$$
$$S\underset{n^2+3n+2=(n+1)(n+2)}{\implies}\frac{1}{2(n+3)(n+4)}$$