Consider $N\ge 0$ and define $\displaystyle F_N(x) = \sum_{r = 1}^{N}\frac{x^{r - 1}}{r}\binom{N}{r}$. Then your question concerns the value $F_{2022}(-1)$. We have
$$
(F_N(x) x)' = \sum_{r = 1}^N x^{r - 1}\binom{N}{r} = \frac{(x + 1)^{N} - 1}{x}.
$$
Notice that
$$
\int \frac{(x + 1)^{n + 1} - 1}{x}\, dx - \int \frac{(x + 1)^{n} - 1}{x}\, dx = \int (x + 1)^ndx;
\\
\int_{-1}^0 \frac{(x + 1)^{n + 1} - 1}{x}\, dx - \int_{-1}^0 \frac{(x + 1)^{n} - 1}{x}\, dx = \int_{-1}^0 (x + 1)^ndx = \frac{1}{n + 1}.
$$
Inducting on the last line we get
$$
\int_{-1}^0 \frac{(x + 1)^{n} - 1}{x}\, dx = 1 + \frac{1}{2} + \ldots + \frac{1}{n} = \sum_{r = 1}^n\frac{1}{r}.
$$
Consequently
$$
F_N(-1) = \int_{-1}^0(F_N(x)x)'dx = \int_{-1}^0 \frac{(x + 1)^{N} - 1}{x}\, dx = \sum_{r = 1}^N\frac{1}{r}.
$$