We have
$$A+B+C=\pi$$
So the probability in question is equivalent to
$$P=\frac{\int_{0}^{\pi}\int_{0}^{\pi-A}\mathbf{1}_{\frac{1}{A}+\frac{1}{B}>\frac{1}{\pi-A-B}}\,\mathrm dB\,\mathrm dA}{\int_{0}^{\pi}\int_{0}^{\pi-A}1\,\mathrm dB\,\mathrm dA}=\frac{2}{\pi^2}\int_{0}^{\pi}\int_{0}^{\pi-A}\mathbf{1}_{\frac{1}{A}+\frac{1}{B}>\frac{1}{\pi-A-B}}\,\mathrm dB\,\mathrm dA$$
Now we analyze the indicator function:
$$\frac{1}{A}+\frac{1}{B}>\frac{1}{\pi-A-B}$$
$$\pi A+\pi B-A^2-2AB-B^2>AB$$
$$A^2+3AB+B^2-\pi A-\pi B<0$$
$$B^2+B(3A-\pi)+A^2-\pi A<0$$
$$\frac{\pi-3A-\sqrt{(\pi-3A)^2-4\left(A^2-\pi A\right)}}{2}<B<\frac{\pi-3A+\sqrt{(\pi-3A)^2-4\left(A^2-\pi A\right)}}{2}$$
$$\frac{\pi-3A-\sqrt{5A^2-2\pi A+\pi^2}}{2}<B<\frac{\pi-3A+\sqrt{5A^2-2\pi A+\pi^2}}{2}$$
We can easily show that $\frac{\pi-3A-\sqrt{5A^2-2\pi A+\pi^2}}{2}\le 0$ and $\frac{\pi-3A+\sqrt{5A^2-2\pi A+\pi^2}}{2}\le\pi-A$. So the lower bound must be improved to $0$, while the upper bound stays the same.
Therefore
$$P=\frac{2}{\pi^2}\int_{0}^{\pi}\frac{\pi-3A+\sqrt{5A^2-2\pi A+\pi^2}}{2}\,\mathrm dA$$
The remaining integral is particularly easy to deal with.