For each $\lambda \in c_0$, the following set is a compact subset of $\ell^1$ with the norm topology: $$ B_\lambda = \{\lambda x \mid x \in B_{\ell^1}\} \subseteq \ell^1 $$ Equivalently, this is the image of $B_{\ell^1}$ under the map $T_\lambda: \ell^1 \to \ell^1, T_\lambda(x) = \lambda x$.
Indeed, let's begin by showing that each $B_\lambda \subseteq \ell^1$, for $\lambda \in c_0$, is a compact subset of $\ell^1$.
By A relative compactness criterion in $\ell^p$ , the compactness of $B_\lambda$ is equivalent to all these three conditions:
$B_\lambda$ is bounded
$B_\lambda$ is closed
$$\underset{N \to \infty}{\operatorname{lim}} \underset{y \in B_\lambda}{\operatorname{sup}} \sum_{n = N}^\infty |y_n| = 0$$
Condition (1.) follows from $$ \|\lambda x\|_1 \leq \|\lambda\|_\infty \|x\|_1 \leq \|\lambda\|_\infty $$
Condition (2.) can be seen as follows: If $\lambda x_k \to y$, define $z$ by $$ z_n = \begin{cases} \frac{y_n}{\lambda_n}, & \lambda_n \neq 0 \\ 0, & \lambda_n = 0 \\ \end{cases} $$ Clearly $\lambda z = y$. It remains to show that $z \in B_{\ell^1}$. By Fatou's Lemma, we have $$ \|z\|_1 = \sum_{n = 1}^\infty |z_n| \leq \sum_{n = 1}^\infty \underset{k \to \infty}{\operatorname{lim inf}} |x_{k, n}| \leq \underset{k \to \infty}{\operatorname{lim inf}} \sum_{n = 1}^\infty |x_{k, n}| = \underset{k \to \infty}{\operatorname{lim inf}} \|x_k\|_1 \leq 1 $$
Condition (3.) is also easy to show: For $\varepsilon > 0$, there is $N_\varepsilon$ such that for all $n \geq N_\varepsilon$, $|\lambda_n| \leq \varepsilon$. Hence $$ \underset{y \in B_\lambda}{\operatorname{sup}} \sum_{n = N_\varepsilon}^\infty |y_n| = \underset{x \in B_{\ell^1}}{\operatorname{sup}} \sum_{n = N_\varepsilon}^\infty |\lambda_n x_n| \leq \varepsilon \underset{x \in B_{\ell^1}}{\operatorname{sup}} \sum_{n = N_\varepsilon}^\infty |x_n| \leq \varepsilon \underset{x \in B_{\ell^1}}{\operatorname{sup}} \|x\|_1 \leq \varepsilon $$ Hence $$\underset{N \to \infty}{\operatorname{lim}} \underset{y \in B_\lambda}{\operatorname{sup}} \sum_{n = N}^\infty |y_n| = 0$$
Now, let's say that a family of compact sets $\mathcal{A}$ is cofinal in the set of all compact subsets of $\ell^1$ if for each compact $K \subseteq \ell^1$, there is some $K' \in \mathcal{A}$ with $K \subseteq K'$.
Is the family $\{B_\lambda\}_{\lambda \in c_0}$ cofinal in the set of all compact subsets of $\ell^1$?
Equivalently, is the following statement true? $$ \forall K \subseteq \ell^1 \text{ compact } \exists \lambda \in c_0 \ \forall y \in K \ \exists x \in \ell^1 \ \forall n \in \mathbb{N} : y_n = \lambda_n x_n $$