I would like to show that for $\lambda \in c_0$, the following set is a compact subset of $\ell^1$ with the norm topology: $$ B_\lambda = \{\lambda x \mid x \in B_{\ell^1}\} \subseteq \ell^1 $$ Equivalently, this is the image of $B_{\ell^1}$ under the map $T_\lambda: \ell^1 \to \ell^1, T_\lambda(x) = \lambda x$.
By A relative compactness criterion in $\ell^p$ , the compactness of $B_\lambda$ is equivalent to all these three conditions:
$B_\lambda$ is bounded
$B_\lambda$ is closed
$$\underset{N \to \infty}{\operatorname{lim}} \underset{y \in B_\lambda}{\operatorname{sup}} \sum_{n = N}^\infty |y_n| = 0$$
Condition (1.) follows from $$ \|\lambda x\|_1 \leq \|\lambda\|_\infty \|x\|_1 \leq \|\lambda\|_\infty $$
Condition (3.) is also easy to show: For $\varepsilon > 0$, there is $N_\varepsilon$ such that for all $n \geq N_\varepsilon$, $|\lambda_n| \leq \varepsilon$. Hence $$ \underset{y \in B_\lambda}{\operatorname{sup}} \sum_{n = N_\varepsilon}^\infty |y_n| = \underset{x \in B_{\ell^1}}{\operatorname{sup}} \sum_{n = N_\varepsilon}^\infty |\lambda_n x_n| \leq \varepsilon \underset{x \in B_{\ell^1}}{\operatorname{sup}} \sum_{n = N_\varepsilon}^\infty |x_n| \leq \varepsilon \underset{x \in B_{\ell^1}}{\operatorname{sup}} \|x\|_1 \leq \varepsilon $$ Hence $$\underset{N \to \infty}{\operatorname{lim}} \underset{y \in B_\lambda}{\operatorname{sup}} \sum_{n = N}^\infty |y_n| = 0$$
Question: How can we show that $B_\lambda$ fulfills condition (2.), i.e. how can we show that $B_\lambda$ is closed?