For all $a,b>0$ define $$ G=\sqrt{ab},\quad A=\frac{a+b}{2},\quad L=\begin{cases}a&a=b\\\frac{b-a}{\log b-\log a}&a\ne b\end{cases}. $$ In the "Logarithmic Mean Revisited" paper, it is shown that $$ L \leq \frac{2}{3}G+\frac{1}{3}A. $$ From https://kuing.cjhb.site/forum.php?mod=redirect&goto=findpost&pid=56797&ptid=11685 : By Power Mean Inequality (Jensen's inequality applied to $f(x)=x^{4/5}$) we have $(\frac{2}{3}G^{4/5}+\frac{1}{3}A^{4/5})^{5/4}≤\frac{2}{3}G+\frac{1}{3}A$ so an improvement of the inequality would be: $$\tag1\label{1} L^{4/5}\leq\frac{2}{3}G^{4/5}+\frac{1}{3}A^{4/5}, $$ Questions:
- Is this inequality true?
- Is the exponent $4/5$ optimal (i.e. it cannot be replaced by any smaller number)?
Some ideas: Consider a change of variables by setting $x = \frac{b}{a} > 0$ to reduce \eqref{1} to a single-variable form $$ \left(\frac{x-1}{\log x}\right)^{4/5}\leq \frac{2}{3}x^{2/5} + \frac{1}{3}\left(\frac{x+1}{2}\right)^{4/5}. $$ The substitution $x = e^{2y}$ transforms this into $$ \left(\frac{e^{2y}-1}{2y}\right)^{4/5}\leq \frac{2}{3}e^{4y/5} + \frac{1}{3}\left(\frac{e^{2y}+1}{2}\right)^{4/5}. $$ Dividing both sides by $e^{4y/5}$, we get $$ \left(\frac{\sinh y}y\right)^{4/5}\leq \frac{2}{3} + \frac{1}{3}\left(\cosh y\right)^{4/5}. $$ Rearranging $$ \left(\left(\frac{\sinh y}y\right)^{4/5} - \frac{2}{3}\right)^5 \leq \frac{1}{3^5}\left(\cosh y\right)^4. $$ Both $\frac{\sinh y}{y}$ and $\cosh y$ are even functions. It suffices to prove the $n$th coefficient of Taylor series at $y=0$ of LHS is less than that of RHS for all even $n>0$.
Using $\frac{\sinh y}{y}=1+\frac{y^2}{3!}+\frac{y^4}{5!}+\cdots$, the $n$th coefficient of Taylor series at $y=0$ of LHS is $$??\label{2}\tag{2}$$ Using $(\cosh y)^4=\frac{1}{8} (4 \cosh (2 y)+\cosh (4 y)+3)$, the $n$th coefficient of Taylor series at $y=0$ of RHS is $$\frac{2^{n-3}(4 + 2^n)}{3^5n!}.\label{3}\tag{3}$$for all even $n>0$.