1

If $x_{n+1}=x_n+\sqrt{x_n^2-1}$ for $n\in\mathbb W(\mathbb W$ denotes the set of whole numbers$)$ and $x_0=2$, then evaluate $\displaystyle\lim_{n\to\infty}2^{-n}x_n$.

This is a self-answered post. Any alternative methods/comments are highly appreciated.

Motivation/Context: I thought of this question by modifying one of the questions that appeared on my sequences and series test, which is:

If $x_{n+1}=\dfrac{x_n}{1+\sqrt{x_n^2+1}}$ for $n\in\mathbb W$ and $x_0=\sqrt3$, then compute $\displaystyle\lim_{n\to\infty}2^nx_n$.

$($which can be solved by recognizing the identity $\tan\frac\theta2=\frac{\tan\theta}{1+\sec\theta}$ for $\theta\ge0)$

1 Answers1

2

The given recurrence relation is reminiscent of the identity

$$\coth\frac{x}2=\coth x+\operatorname{csch}x=\coth x+\operatorname{sgn}(x)\sqrt{\coth^2x-1}$$

Hence, substituting $x_n=\coth\theta$, we get $x_{n+1}=\coth\frac\theta2$. So,

$$x_n=\coth\left(\frac{\coth^{-1}x_0}{2^n}\right)$$ $$\implies\lim_{n\to\infty}2^{-n}x_n=\frac1{\coth^{-1}x_0}$$

Hence, if $x_0=2$, then the value of the given limit is $\frac2{\ln3}$.