Let $X$ and $Y$ be positive, identically distributed RVs. WLOG we may assume $\mathbb{E}[X/Y] < \infty$. Then
Lemma 1. $\mathbb{E}[\log (X/Y)]$ exists in $[-\infty, \infty)$. Moreover, we have
$$ \mathbb{E}[X/Y] \geq 1 + \mathbb{E}[\log (X/Y)]. $$
Proof. This is an immediate consequence of the inequality $1 + x \leq e^x$.
Now the key observation is as follows:
Lemma 2. Let $U$ and $V$ be arbitrary positive RVs such that $\mathbb{E}[\log(U/V)]$ exist in $[-\infty, +\infty]$. Then
$$ \mathbb{E}[\log(U/V)] = \int_{0}^{\infty} \frac{\mathbb{E}[e^{-Vs}] - \mathbb{E}[e^{-Us}]}{s} \, \mathrm{d}s. $$
Using Lemma 1 and 2 and noting that $\mathbb{E}[e^{-Ys}] = \mathbb{E}[e^{-Xs}]$, the desired inequality is easily obtained:
$$\begin{align*}
\mathbb{E}[X/Y]
&\geq 1 + \mathbb{E}[\log(X/Y)] \\
&= 1 + \int_{0}^{\infty} \frac{\mathbb{E}[e^{-Ys}] - \mathbb{E}[e^{-Xs}]}{s} \, \mathrm{d}s \\
&= 1
\end{align*}$$
Remark. When it comes to answering OP's question, Lemma 2 is way too powerful because it applies to a much more general situation. Utilizing the identical distribution condition, we can come up with a more elementary substitute, for example this answer, for our purpose.
Proof of Lemma 2. For each $x \in \mathbb{R}$, let $x_+ = 0 \vee x$ and $x_- = 0 \vee (-x)$ be the positive and negative part of $x$, respectively. Then by the Frullani's integral and the Tonelli's theorem,
$$\begin{align*}
\mathbb{E}[(\log(U/V))_+]
&= \mathbb{E}[\log(U \vee V) - \log V] \\
&= \mathbb{E}\left[ \int_{0}^{\infty} \frac{e^{-Vs} - e^{-(U\vee V)s}}{s} \, \mathrm{d}s \right] \\
&= \int_{0}^{\infty} \frac{\mathbb{E}[e^{-Vs}] - \mathbb{E}[e^{-(U\vee V)s}]}{s} \, \mathrm{d}s.
\end{align*}$$
By the same reasoning, we also have
$$\begin{align*}
\mathbb{E}[(\log(U/V))_-]
&= \int_{0}^{\infty} \frac{\mathbb{E}[e^{-Us}] - \mathbb{E}[e^{-(U\vee V)s}]}{s} \, \mathrm{d}s.
\end{align*}$$
However, since $\mathbb{E}[\log (U/V)]$ is assumed to exist in $[-\infty, +\infty]$, at least one of the above integrals is finite. Hence, their difference is well-defined, yielding
$$\begin{align*}
\mathbb{E}[\log(U/V)]
&= \mathbb{E}[(\log(U/V))_+] - \mathbb{E}[(\log(U/V))_-] \\
&= \int_{0}^{\infty} \frac{\mathbb{E}[e^{-Vs}] - \mathbb{E}[e^{-Us}]}{s} \, \mathrm{d}s
\end{align*}$$
as required.
\cdot. – Michael Hardy Mar 09 '25 at 16:59