In this question I tried to solve:
$$L:=\lim\limits_{x\to \infty }\Gamma(x+2)^{\frac{1}{x+1}}-\Gamma(x+1)^{\frac{1}{x} }$$
I then "reduced" the question to finding: $$\lim\limits_{x\to \infty} x \left(1-\left(\frac{x!}{x^x}\right)^{\frac{1}{x(x+1)} }\right) $$ Here I use $x!$ instead of $\Gamma(x+1)$ because it looks cleaner.
Sangchul Lee Gave a very clever solution to $L:=\lim\limits_{x\to \infty }\Gamma(x+2)^{\frac{1}{x+1}}-\Gamma(x+1)^{\frac{1}{x} }$ However I wonder how one can prove $\lim\limits_{x\to \infty} x \left(1-\left(\frac{x!}{x^x}\right)^{\frac{1}{x(x+1)} }\right)=1 $ without using l'lhopital.
This limit is interesting because it involves $\left(\frac{x!}{x^x}\right)^{\frac{1}{x} }$ and this famous limit is $1/e$.