This problem is in my problem book:
$$L:=\lim\limits_{x\to \infty }\Gamma(x+2)^{\frac{1}{x+1}}-\Gamma(x+1)^{\frac{1}{x} }$$
Whoever the book didn't provide a solution.
My attempt:
I will use $x!=\Gamma(x+1)$
$$=\lim\limits_{x\to \infty }(x+1)!^{\frac 1{x+1}}-(x!)^{1/x}$$
$$=\lim\limits_{x\to \infty }x!^{1/x}\left(\frac{(x+1)^\frac{1}{x+1}-(x!)^{\frac{1}{x(x+1)}}}{(x!)^{\frac{1}{x(x+1)}}}\right)$$ $$=\lim\limits_{x\to \infty }\frac{x!^{1/x}}{x} \times x\left({(x+1)^\frac{1}{x+1}-(x!)^{\frac{1}{x(x+1)}}}\right)$$ $$\lim\limits_{x\to \infty }\frac{x^{1/x}}{x} =\frac 1 e$$
$$J:=x\left({(x+1)^\frac{1}{x+1}-(x!)^{\frac{1}{x(x+1)}}}\right)$$ $L=\frac J e$
Assume $x^{\frac1 {1+x}} b(x)=(x!)^{\frac{1}{x(x+1)}}$, $b(x) \to 1 $ as $x\to \infty$ $$J=\lim\limits_{x\to \infty }xb(x)\left({(x+1)^\frac{1}{x+1}-(x)^{\frac{1}{(x+1)}}}\right)+\lim\limits_{x\to \infty }x(x+1)^\frac{1}{x+1}\left(1-b(x)\right) $$
$$\lim\limits_{x\to \infty }x\left({(x+1)^\frac{1}{x+1}-(x)^{\frac{1}{(x+1)}}}\right)=0 \tag 1$$
$$J=\lim\limits_{x\to \infty} x \left(1-\left(\frac{x!}{x^x}\right)^{\frac{1}{x(x+1)} }\right) \tag 2$$
I couldn't prove that (1) would be zero and I couldn't evaluate (2).