2

Prove that $$I=\int_{0}^{\infty}\frac{ \ln(x)\cos(\ln(x))}{x^2+1}dx=0$$

I used the substituion $x=e^t$ and the integral became $$I=\int_{-\infty}^{\infty}\frac{t\cos(t)}{e^{2t}+1}\cdot e^t\:\:dt$$ or $$I=\int_{-\infty}^{\infty}\frac{t\cos(t)}{e^{t}+e^{-t}}dt$$ or $$I=\int_{-\infty}^{\infty}\frac{t\cos(t)}{2\cosh(t)}dt$$

After this I tried different approaches but all in vain.

Any help is greatly appreciated.

1 Answers1

6

Actually,$$I=\int_{-\infty}^\infty\frac{t\cos(t)\color{red}{e^t}}{e^{2t}+1}\,\mathrm dt=\int_{-\infty}^\infty\frac{t\cos(t)}{e^t+e^{-t}}\,\mathrm dt.$$Since you are integrating an odd function, $I$ is indeed $0$.