Prove that $$I=\int_{0}^{\infty}\frac{ \ln(x)\cos(\ln(x))}{x^2+1}dx=0$$
I used the substituion $x=e^t$ and the integral became $$I=\int_{-\infty}^{\infty}\frac{t\cos(t)}{e^{2t}+1}\cdot e^t\:\:dt$$ or $$I=\int_{-\infty}^{\infty}\frac{t\cos(t)}{e^{t}+e^{-t}}dt$$ or $$I=\int_{-\infty}^{\infty}\frac{t\cos(t)}{2\cosh(t)}dt$$
After this I tried different approaches but all in vain.
Any help is greatly appreciated.