Let $ A, B \in M_n(\mathbb{C}) $ such that there exists $ \alpha \in \mathbb{C}^* $ and an odd natural number $ k $ such that $ A^k = \alpha I_n.$ If $ C = 2(I_n - B),$ prove that: $ A^2 B + B A^2 = A C A $ if and only if $ C = I_n. $
My attempt: Assuming that $ C = I_n $ we are done. Now we assume $ A^2 B + B A^2 = A C A $ and we prove $ C = I_n $.
$A^k = \alpha I_n \quad \text{with} \quad \alpha \neq 0,$ $A$ is invertible. Specifically:
$ A^k = \alpha I_n \implies A^{k-1} = \alpha A^{-1} \implies A^{-1} = \frac{1}{\alpha} A^{k-1}. $ Thus, $A$ is invertible.
From the definition of $C$: $ C = 2(I_n - B) \implies I_n - B = \frac{C}{2} \implies B = I_n - \frac{C}{2}. $
Substitute $B = I_n - \frac{C}{2}$ into the equation: $ A^2 B + B A^2 = A C A. $ Thus: $ A^2 \left(I_n - \frac{C}{2}\right) + \left(I_n - \frac{C}{2}\right) A^2 = A C A. $
Expanding the left-hand side (LHS): \begin{align*} A^2 \left(I_n - \frac{C}{2}\right) + \left(I_n - \frac{C}{2}\right) A^2 &= A^2 I_n - \frac{A^2 C}{2} + I_n A^2 - \frac{C A^2}{2} \\ &= 2 A^2 - \frac{A^2 C + C A^2}{2}. \end{align*}
Setting LHS equal to the right-hand side (RHS): $ 2 A^2 - \frac{A^2 C + C A^2}{2} = A C A. $
Thus, $ 4 A^2 = A^2 C + C A^2 + 2 A C A. $
I got stuck here. How can I continue it?
We can also prove that $A$ is diagonalizable since $\lambda^k = \alpha$ has all distinct roots.