Focusing on the sub-expression $y := x-\sqrt{x^2+4}$,
$$y(x+\sqrt{x^2+4}) = (x-\sqrt{x^2+4})(x+\sqrt{x^2+4})$$
$$y(x+\sqrt{x^2+4}) = -4$$
For sufficiently large values of $x$, $\sqrt{x^2+4} \approx x$, so:
$$y(2x) \approx -4$$
$$y \approx -\frac{2}{x}$$
(WolframAlpha plot of $y$ versus its large-$x$ approximation.)
And per @Villa's comment, $\ln(e^x+6x) \approx \ln(e^x) = x$.
Combining these two factors:
$$\ln(e^x+6x)(x-\sqrt{x^2+4}) \approx \left(x\right)\left(-\frac{2}{x}\right) = -2$$
Edit: With a bit more formality,
$$L := \lim_{x\to\infty}\ln(e^x+6x)(x-\sqrt{x^2+4})$$
$$= \lim_{x\to\infty} \frac{\ln(e^x+6x)(x-\sqrt{x^2+4})(x+\sqrt{x^2+4})}{x+\sqrt{x^2+4}}$$
$$= \lim_{x\to\infty} \frac{\ln(e^x+6x)(-4)}{x+\sqrt{x^2+4}}$$
This has the form $\frac{-\infty}{+\infty}$, so apply L'Hôpital's Rule.
$$L = -4\lim_{x\to\infty} \frac{\frac{1}{e^x+6x}(e^x + 6)}{1+\frac{1}{2}(x^2+4)^{-1/2}(2x)}$$
$$L = -4\lim_{x\to\infty} \frac{\frac{e^x + 6}{e^x+6x}}{1+\frac{x}{\sqrt{x^2+4}}}$$
$$L = -4 \cdot \frac{1}{1+1} = -2$$