Let $\tau \in \mathcal L(U,V) $ and $\sigma \in \mathcal L(V,W) $ show that $rk(\sigma \tau ) \le \min \{rk( \tau), rk(\sigma) \}$
I tried to prove that like this:
I have to prove that $rk(\sigma \tau ) \le rk(\sigma)$ and $rk(\sigma \tau ) \le rk( \tau)$
$rk(\sigma \tau) =dim(Im(\sigma \tau ))=dim(\sigma(\tau (U)))$
Since $\tau (U) \subset V \Rightarrow \sigma (\tau(U)) \subset \sigma (V) = Im(\sigma) \Rightarrow rk(\sigma \tau) \le rk(\sigma) $
For proving that $rk(\sigma \tau ) \le rk( \tau)$ :
By The Rank Plus Nullity Theorem :
$rk(\sigma \tau) +dim(ker(\sigma \tau )) =dim(U)=rk(\tau ) +dim(ker(\tau))$
If we take $dim(U) < \infty $ then $dim(ker(\sigma \tau )), dim(ker(\tau)) < \infty $ So we can write :
$ rk(\sigma \tau) = rk(\tau ) +dim(ker(\tau)) -dim(ker(\sigma \tau )) $
Since $ ker(\tau) \subset ker(\sigma \tau )$ we have $dim(ker(\tau)) -dim(ker(\sigma \tau )) \le 0$ then
$rk(\sigma \tau ) \le rk( \tau) $
But in the question there isn't this condition "$dim(U) < \infty $". So I have to prove that is correct for infinity dimension of $U$ but I couldn't do this. Any help?