I noticed this pattern using WolframAlpha that
$$ \sum_{m=1}^\infty \left( \zeta(2m) - \zeta(2m + 2k) \right) = \sum_{m=1}^k \zeta(2m) - k $$
I've tried to prove it as follows:
\begin{align} \sum_{m=1}^\infty \left( \zeta(2m) - \zeta(2m + 2k) \right) &= \sum_{m=1}^\infty \sum_{n=2}^\infty \left( \frac{1}{n^{2m}} - \frac{1}{n^{2m + 2k}} \right) \\ &= \sum_{n=2}^\infty \sum_{m=1}^\infty \left( \frac{1}{n^{2m}} - \frac{1}{n^{2m + 2k}} \right) \\ &= \sum_{n=2}^\infty \left( \sum_{m=1}^\infty \frac{1}{n^{2m}} - \sum_{m=1}^\infty \frac{1}{n^{2m + 2k}} \right) \\ &= \sum_{n=2}^\infty \left( \frac{1}{n^2 - 1} - \frac{1}{n^{2k}(n^2 - 1)} \right) \\ &= \sum_{n=2}^\infty\frac{n^{2k} - 1}{n^{2k}(n^2 - 1)} \\ &= \sum_{m=1}^k \zeta(2m) - k \end{align}
but, to complete the proof, I'm curious how WolframAlpha determines that
$$\sum_{n=2}^\infty\frac{n^{2k} - 1}{n^{2k}(n^2 - 1)} = \sum_{m=1}^k \zeta(2m) - k$$
Update:
Based on the comments, we have
$$\sum_{m=1}^\infty \left( \zeta(2m) - \zeta(2m + 2k) \right) = \sum_{n=2}^\infty\frac{n^{2k} - 1}{n^{2k}(n^2 - 1)} = \sum_{n=2}^\infty\frac{1 - n^{-2k}}{n^2 - 1} \tag{1}$$
and
$$\sum_{m=1}^k \zeta(2m) = \sum_{m=1}^k \sum_{n=1}^\infty \frac{1}{n^{2m}} = \sum_{n=1}^\infty \sum_{m=1}^k \frac{1}{n^{2m}}$$
For $n=1$,
$$\sum_{m=1}^k \frac{1}{1^{2m}} = k$$
For $n \ge 2$,
$$\sum_{m=1}^k \frac{1}{n^{2m}} = \frac{1 - n^{-2k}}{n^2 - 1}$$
Therefore,
$$\sum_{m=1}^k \zeta(2m) = k + \sum_{n=2}^\infty \frac{1 - n^{-2k}}{n^2 - 1}$$
So,
$$\sum_{m=1}^k \zeta(2m) - k = \sum_{n=2}^\infty \frac{1 - n^{-2k}}{n^2 - 1} \tag{2}$$
Finally, comparing $(1)$ and $(2)$:
$$ \sum_{m=1}^\infty \left( \zeta(2m) - \zeta(2m + 2k) \right) = \sum_{m=1}^k \zeta(2m) - k $$
References:
Show $\sum_{m=1}^{\infty} \left(\zeta(2m) - \zeta(2m+1)\right) = \frac{1}{2}$