\begin{align} \sum_{m=1}^{\infty} \left(\zeta(2m) - \zeta(2m+1)\right) &= \sum_{m=1}^{\infty} \sum_{n=2}^{\infty} \left( \frac{1}{n^{2m}} - \frac{1}{n^{2m+1}} \right) \\ &= \sum_{n=2}^{\infty} \sum_{m=1}^{\infty} \left( \frac{1}{n^{2m}} - \frac{1}{n^{2m+1}} \right) \tag{*}\\ &= \sum_{n=2}^{\infty} \left( \sum_{m=1}^{\infty} \frac{1}{n^{2m}} - \sum_{m=1}^{\infty} \frac{1}{n^{2m+1}} \right) \\ &= \sum_{n=2}^{\infty} \left( \frac{1}{n^2 - 1} - \frac{1}{n(n^2 - 1)} \right) \\ &= \sum_{n=2}^{\infty} \frac{n - 1}{n(n^2 - 1)}\\ &= \sum_{n=2}^{\infty} \frac{n - 1}{n(n-1)(n+1)} \\ &= \sum_{n=2}^{\infty}\frac{1}{n(n+1)} \\ &= \sum_{n=2}^{\infty}\left(\frac{1}{n} - \frac{1}{n+1}\right) \\ &= \left( \frac{1}{2} - \frac{1}{3} \right ) + \left( \frac{1}{3} - \frac{1}{4} \right ) + \left( \frac{1}{4} - \frac{1}{5} \right ) + \cdots \\ &= \frac{1}{2} \end{align}
Is interchanging the order of summation at $(*)$ valid?
I couldn't find any proofs of this identity online, although WolframAlpha verifies the result.