Suppose $A,B\in\mathbb{R}^{n\times n}$ are given matrices. What is the value for this optimization problem and can this be expressed in terms of $A$ and $B$? \begin{align*} &\max{\text{Tr}|AXA^{T}+BXB^{T}|}\\ \text{s.t }& X=X^{T},X^2=I \end{align*} The problem is easy for $\max{\text{Tr}|AXA^{T}|}$, because $\text{Tr}|AXA^{T}|\leq ||A||_2||X||_2||A^T||_2\leq ||A||^2$ (the dimension normalizer is omit,$||·||_2$ is the Spectral 2-norm). Using this method we can get an upper bound: $||AA^T||_2+||BB^{T}||_2$ but the equality may not hold.
Update: For a Hermitian or real symmetric matrix $A$, $Tr|A|=\sum_i|\lambda_i| $, $\lambda_i$ are eigenvalues of $A$