Let $Z = X+Y$, and notice that $Z$ takes on values in $[0,2]$.
For any fixed value of $z$,
$$F_Z(z) = P\{Z \leq z\} = P\{X+Y \leq z\}\\
=
\int\int_{x+y\le z}
f_{X,Y}(x,y)\,\mathrm d(x,y)
=\int_{-\infty}^{\infty}\left[ \int_{-\infty}^{z-x}
f_{X,Y}(x,y)\,\mathrm dy\right]\,\mathrm dx$$
and so, using the rule for differentiating under the integral sign
(see the comments following this answer
if you have forgotten this)
$$\begin{align*}
f_Z(z) &= \frac{\partial}{\partial z}F_Z(z)\\
&= \frac{\partial}{\partial z}\int_{-\infty}^{\infty}\left[ \int_{-\infty}^{z-x}
f_{X,Y}(x,y)\,\mathrm dy\right] \,\mathrm dx\\
&= \int_{-\infty}^{\infty}\frac{\partial}{\partial z}\left[ \int_{-\infty}^{z-x}
f_{X,Y}(x,y)\,\mathrm dy\right]\,\mathrm dx\\
&= \int_{-\infty}^{\infty}
f_{X,Y}(x,z-x)\,\mathrm dx\tag{1}
\end{align*}$$
You will need to set up the integral shown in $(1)$ for four separate cases: $z < 0$, $0 \leq z \leq 1$, $1 < z \leq 2$, and $z > 2$, and then massage them a bit, e.g. noticing that the limits can be reduced to $0$ and $1$ since $f_{X,Y}(x,z-x) = 0$ if $x<0$ or $x>1$, and $z-x$ also needs to be in $[0,1]$ which also affects the limits differently in the four cases. Then, plug in the explicit formula for $f_{X,Y}$ and away we go! I hope the integral will work out to have value $0$ in the first and last cases.