Comment: Suppose the author of the question expect an elementary number Theoric solution at high school level, then we may argue:
Case 1: $(x, y, 3)=1$, then we have:
$x^2\equiv 1\bmod 3$
$y^3\equiv y\bmod 3$
$\Rightarrow x^2+y^3\equiv (1+y)\bmod 3$
$2024\equiv 2 \bmod 3$
$\Rightarrow y+1\equiv 2\bmod 3$
$y\equiv 1 \bmod 3$
Now we may write:
$(y, y^3)=(4, 64), (7, 343), (10, 1000), (13, 2197)$
So only numbers$ 4$ , $7$ and $10$ can be checked, we can see that only numbers 7 and 10 give integer for x:
$y=7\rightarrow x=41$
$y=10\rightarrow x=32$
Also:
If $a\equiv -1\bmod 3\Rightarrow -a\equiv 1 \bmod 3$
$(y, y^3, -1\bmod 3)=(2, 8, 7), (3, 27, 26), (7, 343, 342)\cdot\cdot\cdot$
For example $-26$ gives $x=140$
There are probably more solutions with negative $y$.
Case 2:
$x\equiv 0\bmod 3$
$y^3\equiv y\bmod 3$
$x^2+y^3\equiv (0+y)\bmod 3\equiv 2\bmod 3$
$\Rightarrow y\equiv 2\bmod 3\equiv -1\bmod 3$
We may write:
$(y, y^3)=(-1, -1), (-4, -64), (-7, -343), \cdot\cdot\cdot (-58, -195112)\cdot\cdot\cdot$
$-1$ gives $x=45$ and $-58$ give $444$.
There are probably more solutions with negative $y$.