4

How can you find all solutions to the equation $x^2 + y^3 = 2024$ over the integers?

This question came to me randomly, and checking with technology, there are a total of ten solutions:

$x = \pm 444, y = -58$

$x = \pm 140; y = -26$

$x = \pm 45; y = -1$

$x = \pm 41; y = 7$

$x = \pm 32; y = 10$

Is there a better way to go about this rather than bashing? I see you could try to factor the equation by adding one and then making a difference of squares like $$y^3+1=45^2-x^2,$$ but I don’t know how to proceed from there.

Bill Dubuque
  • 282,220
Avery Wenger
  • 534
  • 3
  • 9

1 Answers1

-1

Comment: Suppose the author of the question expect an elementary number Theoric solution at high school level, then we may argue:

Case 1: $(x, y, 3)=1$, then we have:

$x^2\equiv 1\bmod 3$

$y^3\equiv y\bmod 3$

$\Rightarrow x^2+y^3\equiv (1+y)\bmod 3$

$2024\equiv 2 \bmod 3$

$\Rightarrow y+1\equiv 2\bmod 3$

$y\equiv 1 \bmod 3$

Now we may write:

$(y, y^3)=(4, 64), (7, 343), (10, 1000), (13, 2197)$

So only numbers$ 4$ , $7$ and $10$ can be checked, we can see that only numbers 7 and 10 give integer for x:

$y=7\rightarrow x=41$

$y=10\rightarrow x=32$

Also:

If $a\equiv -1\bmod 3\Rightarrow -a\equiv 1 \bmod 3$

$(y, y^3, -1\bmod 3)=(2, 8, 7), (3, 27, 26), (7, 343, 342)\cdot\cdot\cdot$

For example $-26$ gives $x=140$

There are probably more solutions with negative $y$.

Case 2:

$x\equiv 0\bmod 3$

$y^3\equiv y\bmod 3$

$x^2+y^3\equiv (0+y)\bmod 3\equiv 2\bmod 3$

$\Rightarrow y\equiv 2\bmod 3\equiv -1\bmod 3$

We may write:

$(y, y^3)=(-1, -1), (-4, -64), (-7, -343), \cdot\cdot\cdot (-58, -195112)\cdot\cdot\cdot$

$-1$ gives $x=45$ and $-58$ give $444$.

There are probably more solutions with negative $y$.

sirous
  • 12,694