Given the known identity also known as "Hurwitz formula" or "Functional equation of Hurwitz zeta function", $$ \zeta(1 - s, x) = \frac{\Gamma(s)}{(2\pi)^s} \left( e^{- \frac{\pi i s}{2}} \sum_{n=1}^{\infty} \frac{e^{2\pi inx}}{n^s} + e^{\frac{\pi i s}{2}} \sum_{n=1}^{\infty} \frac{e^{-2\pi inx}}{n^s} \right) $$ (valid for $\Re(s) > 1$ and $0 < x ≤ 1$.) which reduces to Riemann zeta function's functional equation, how does the right-hand side behave when looping around the origin $j$ times, i.e., when $x \mapsto x + j$ for some integer $j$?
The branch cut of the polylogarithm $\sum_{n=1}^{\infty} \frac{e^{\pm 2\pi inx}}{n^s}$ increases as $x$ crosses certain values (as discussed in https://math.stackexchange.com/a/4605477/622884). Specifically, how can the domain of $x$ be extended beyond the usual constraint $0 < \Re(x) \leq 1$?
$$Li_n(e^{2\pi ix}) + (-1)^n Li_n(e^{-2\pi ix}) = -\frac{(2\pi i)^n}{n!} B_n(x)$$ where again $0 \leq Re(x) < 1$ if $Im(x) \geq 0$, and $0 < Re(x) \leq 1$ if $Im(x) < 0$. This was taken from the Wikipedia site on the Polylogarithm.
– Dr Potato Oct 08 '24 at 21:21