So I want to figure out the value of $\arccos(\frac{1}{\sqrt{5}})+\arcsin(\frac{3}{\sqrt{10}})$.
Let $\alpha=\arccos(\frac{1}{\sqrt{5}})$ and $\beta=\arcsin(\frac{3}{\sqrt{10}})$. So $\alpha+\beta=\arccos(\frac{1}{\sqrt{5}})+\arcsin(\frac{3}{\sqrt{10}})$. I have tried using the sum rule for sine:
$$\sin(\alpha+\beta)=\sin(\alpha) \cos(\beta)+\cos(\alpha) \sin(\beta)$$ Furthermore we have:
$$\sin(\alpha)=\sin(\arccos(\frac{1}{\sqrt{5}}))=\frac{2}{\sqrt{5}} \\ \\sin(\beta)=\sin(\arcsin(\frac{3}{\sqrt{10}}))=\frac{3}{\sqrt{10}} \\ \cos(\alpha)=\cos(\arccos(\frac{1}{\sqrt{5}}))=\frac{1}{\sqrt{5}} \\ \cos(\beta)=\cos(\arcsin(\frac{3}{\sqrt{10}}))=\frac{1}{\sqrt{10}}$$
So $$\sin(\alpha+\beta)=\sin(\alpha) \cos(\beta)+\cos(\alpha) \sin(\beta)=\frac{1}{\sqrt{2}} \\ \implies \\ \alpha+\beta= \frac{\pi}{4} + k*2\pi \ \lor \alpha+\beta= \frac{3\pi}{4} + k*2\pi, k \in \mathbb Z$$
Since both arcsin and arccos takes positive values we get:
$$0<\alpha<\frac{\pi}{2} \ \& \ 0< \beta<\frac{\pi}{2} \implies 0<0<\alpha+\beta<\pi $$
The case $\alpha+\beta= \frac{\pi}{4} + k*2\pi$ gives: $$0<\frac{\pi}{4} + k*2\pi<pi \\ 0< \frac{1}{8}+k<\frac{1}{2} \\ -\frac{1}{8}<k<\frac{3}{8} \implies k = 0; \text{Thus we have that } \alpha+\beta = \frac{\pi}{4}$$
The case $\alpha+\beta= \frac{3\pi}{4} + k*2\pi$ gives with the same type of reasoning that $\alpha+\beta=\frac{3\pi}{4}$.
So we get the answers $\frac{\pi}{4}$ and $\frac{3\pi}{4}$, but $\frac{\pi}{4}$ is false and I cannot not see why. What am I doing wrong?
This shows that $\alpha+\beta$ is equal to your larger option.
– peterwhy Sep 18 '24 at 16:09