Yes; one way to prove it starts with the following lemma:
Lemma: For complex numbers $x, y, z$ we have
$$ \overline {xyz} + \overline xyz + x\overline yz + xy\overline z = 4\mathfrak{Re}(x)\mathfrak{Re}(y)\mathfrak{Re}(z) + 4\mathfrak{Im}(x)\mathfrak{Im}(y)\mathfrak{Im}(z)i.$$
I leave you to prove the lemma (can be done algebraically by expanding each complex number into real and imaginary parts and distributing).
We now choose:
$x = e^{n\alpha i/2} = \cos\left(\frac{n\alpha}{2}\right) + \sin\left(\frac{n\alpha}{2}\right)i$, $y = e^{n\beta i/2}= \cos\left(\frac{n\beta}{2}\right) + \sin\left(\frac{n\beta}{2}\right)i$,$ z = e^{n\gamma i/2}= \cos\left(\frac{n\gamma}{2}\right) + \sin\left(\frac{n\gamma}{2}\right)i$ and calculate the following product:
$$xyz = e^{n\alpha i/2}e^{n\beta i/2}e^{n\gamma i/2} = e^{n(\alpha+\beta+\gamma)i/2} = e^{n\pi i/2} = \left(e^{\pi i/2}\right)^n=i^n = \begin{cases}1 & \text{ if } n\equiv 0 \mod 4, \\
i & \text{ if } n\equiv 1 \mod 4, \\
-1 & \text{ if } n\equiv 2 \mod 4, \\
-i & \text{ if } n\equiv 3 \mod 4. \\
\end{cases}$$
We can also calculate
$$\overline xyz = e^{-n\alpha i/2}e^{n\beta i/2}e^{n\gamma i/2} = e^{n(\beta+\gamma-\alpha)i/2} = e^{n(\pi-2\alpha)i/2} = e^{(n\pi/2 - n\alpha) i}$$
where
$$e^{(n\pi/2 - n\alpha)i} = \begin{cases}\cos(n\alpha)-\sin(n\alpha)i & \text{ if } n\equiv 0 \mod 4, \\
\sin(n\alpha)+\cos(n\alpha)i & \text{ if } n\equiv 1 \mod 4, \\
-\cos(n\alpha)+\sin(n\alpha)i & \text{ if } n\equiv 2 \mod 4, \\
-\sin(n\alpha)-\cos(n\alpha)i & \text{ if } n\equiv 3 \mod 4. \\
\end{cases},$$
and symmetric results hold for the other two terms. Combining these calculations yields, in the case that $n$ is even (0 or 2 $\mod 4$):
$$\left[1 + \cos(n\alpha) + \cos(n\beta) + \cos(n\gamma)\right]-\left[ \sin(n\alpha) + \sin(n\beta) + \sin(n\gamma)\right]i = 4(-1)^{n/2}\left(\cos\left(\frac{n\alpha}{2}\right)\cos\left(\frac{n\beta}{2}\right)\cos\left(\frac{n\gamma}{2}\right) + \sin\left(\frac{n\alpha}{2}\right)\sin\left(\frac{n\beta}{2}\right)\sin\left(\frac{n\gamma}{2}\right)i\right].$$
Matching imaginary parts on both sides yields your identity. Similarly, in the case that $n$ is odd we have
$$\left[ \sin(n\alpha) + \sin(n\beta) + \sin(n\gamma)\right] + \left[-1 + \cos(n\alpha) + \cos(n\beta) + \cos(n\gamma)\right]i = 4(-1)^{(n-1)/2}\left(\cos\left(\frac{n\alpha}{2}\right)\cos\left(\frac{n\beta}{2}\right)\cos\left(\frac{n\gamma}{2}\right) + \sin\left(\frac{n\alpha}{2}\right)\sin\left(\frac{n\beta}{2}\right)\sin\left(\frac{n\gamma}{2}\right)i\right]$$
and matching the real parts on both sides yields your identity.