Here is a problem from Gelfand's Trigonometry:
Let $\alpha, \beta, \gamma$ be any angle, show that $$\sin(\alpha -\beta)+\sin(\alpha-\gamma)+\sin(\beta-\gamma)=4\cos\left(\frac{\alpha-\beta}{2}\right)\sin\left(\frac{\alpha-\gamma}{2}\right)\cos\left(\frac{\beta-\gamma}{2}\right).$$
I have tried to worked through this problem but cannot complete it. If I let $A= \alpha -\beta$, $B=\beta-\gamma$ and $C= \beta-\gamma$, and $A+B+C=\pi$ (now $A$, $B$ and $C$ are angles of a triangle), then I could prove the equality. But without this condition, I am stuck.
Could you show me how to complete this exercise?