Let $A, B, X$ be three real, symmetric positive semidefinite matrices and suppose that the inequality $$ X \preceq \sqrt{A} (\sqrt{A} B \sqrt{A} + I)^{-1} \sqrt{A} $$ holds where $\sqrt{\cdot}$ denotes the positive semidefinite square-root of a matrix.
In the case that $A, B $ are both nonsingular, we can write this inequality equivalently as $$ \begin{pmatrix} X & X \\ X & X \end{pmatrix} \preceq \begin{pmatrix} A & 0 \\ 0 & B^{-1}\end{pmatrix}. \qquad \mbox{$(*)$} $$ (See proof below.)
Question: Is there an analogous "simpler" form when $A, B$ are possibly singular (i.e., positive semidefinite but not necessarily definite)?
Proof of $(*)$: Set $M = \left(\begin{smallmatrix} A^{-1} & I \\ B & - I \end{smallmatrix}\right)$; note that it is nonsingular. Hence the inequality above is equivalent to $$ 0 \succeq M^T \begin{pmatrix} X - A & X \\ X & X - B^{-1} \end{pmatrix} M = \begin{pmatrix} A^{-1}XA^{-1} + BXB + A^{-1}XB + BXA^{-1} - (B + A^{-1})& 0 \\ 0& -(A + B^{-1}) \end{pmatrix} $$ Or equivalently, $$ (B+A^{-1})X (B+A^{-1}) \preceq (B + A^{-1}) $$ Which is in turn equivalent to $$ X \preceq (B + A^{-1})^{-1} = \sqrt{A} (\sqrt{A} B \sqrt{A} + I)^{-1}\sqrt{A}. \hspace{5mm}\square $$