As @Aruralreader pointed out, we could find this by understanding that our solution has angular symmetry and thus: $$(\partial_{rr} + \frac{1}{r}\partial_r) u(r,\theta) = u(r)_{rr} + \frac{1}{r}u(r)_r = 1$$
However, the desired goal here is to arrive to the solution using only Green's Function, so I'm asking for help with finding the solution using only Green's function.
This is all in polar coordinates.
$$\nabla^2 u(r,\theta) = f(r,\theta); \cases{0\le\theta\le 2\pi \\ 0\le r < \infty \\ u(r,\theta) = u(r,\theta\pm2n\pi)\\ u(a,\theta) = 0 \\ f(r,\theta) = \cases{1 & $0\le r \le R \land 0\le\theta\le 2\pi$ \\ 0}}$$
Green's function (which we arrive to using method of images for a circle) for this equation (such that $G(r = a,\theta,r_0,\theta_0) = 0$): $$G(\textbf{r},\textbf{r}_0) = \frac{1}{4\pi}\ln\Bigg(\frac{a^2}{r_0^2}\frac{r^2+r_0^2-2rr_r\cos(\theta-\theta_0)}{r^2+a^2\Big(\frac{a}{r_0}\Big)^2-2r\frac{a^2}{r_0}\cos(\theta-\theta_0)}\Bigg)$$
And the solution obtained from Green's formula is then:
$$\tag{1} u(r,\theta) = \int_0^{2\pi} \int_0^R f(\textbf{r}_0)G(\textbf{r},\textbf{r}_0)r_0dr_0d\theta_0 - \int_0^{2\pi}u(a,\theta)\frac{\partial G(\textbf{r},\textbf{r}_0)}{\partial r_0}|_{|\textbf{r}| = r= a}d\theta_0 \\ = \frac{1}{4\pi}\int_0^{2\pi} \int_0^R \ln\Bigg(\frac{a^2}{r_0^2}\frac{r^2+r_0^2-2rr_r\cos(\theta-\theta_0)}{r^2+a^2\Big(\frac{a}{r_0}\Big)^2-2r\frac{a^2}{r_0}\cos(\theta-\theta_0)}\Bigg)r_0 dr_0d\theta_0 + 0$$
Computing the angular integral which we note the integrand was simplified from $\cos(\theta-\theta_0)$ to $\cos(\theta_0)$ as semiclassical alludes to here due to integrating a $2\pi$ periodic function over the period, after doing some factoring to rewrite the square roots in terms of magnitudes which I worked out at the end of my own answer here, we arrive to:
$$\tag{2}u(r,\theta) =-\frac{1}{2}\int_0^R\ln\Bigg(\frac{r_0^2}{a^2}\frac{r^2+\Big(\frac{a^2}{r_0}\Big)^2+|r^2-\Big(\frac{a^2}{r_0}\Big)^2|}{r^2+r_0^2+|r^2-(r_0)^2|}\Bigg)r_0dr_0; $$
From the magnitudes, we rewrite them into the following piecewise definitions:
$$|r^2-\Big(\frac{a^2}{r_0}\Big)^2| = \cases{r^2-\Big(\frac{a^2}{r_0}\Big)^2 & $r_0\ge\frac{a^2}{r}$ \\ \Big(\frac{a^2}{r_0}\Big)^2-r^2 & $r_0<\frac{a^2}{r}$} \\ |r^2-r_0^2| = \cases{r^2-r_0^2 & $r_0\le r$ \\ r_0^2-r^2 & $r_0>r$}$$
Which results in the following integrals:
$$-\frac{1}{2}\Bigg[\underbrace{2 \int_{0}^{\frac{a^2}{r}}r_0\ln\Big(\sqrt{2}a^2\Big)dr_0}_{(A)} + 2\underbrace{\int_\frac{a^2}{r}^{R}r_0\ln\Big(\sqrt2 rr_0\Big)dr_0}_{(B)} \\ -2\underbrace{\int_0^r r_0\ln(\sqrt{2}ar)dr_0}_{(C)} - 2\underbrace{\int_r^R r_0\ln(\sqrt{2}ar_0)dr_0}_{(D)}\Bigg]$$
$$(A) = -\frac{1}{2}\Big(\frac{a^2}{r}\Big)^2\ln(\sqrt{2}a^2)$$
For (B): $$u = \ln(\sqrt{2}rr_0) \ \ \ \ dv = r_0dr_0 \\ du = \frac{\sqrt{2}r}{\sqrt{2}rr_0}dr_0 \ \ \ \ v= r_0^2/2 \\ (B) = -\frac{1}{2}\Bigg[\Big(R^2\ln(\sqrt{2}rR)-\Big(\frac{a^2}{r}\Big)^2\ln(\sqrt{2}a^2)\Big) + \frac{1}{2}\bigg(\Big(\frac{a^2}{r}\Big)^2-R^2\Big)\bigg)\bigg]$$
$$(C) = +\frac{1}{2}r^2\ln(\sqrt{2}ar)$$
For (D):
$$u = \ln\Big(\sqrt{2}ar_0\Big) \ \ \ \ dv = r_0dr_0 \\ du = \frac{1}{\sqrt{2}ar_0}\sqrt{2}a dr_0 \ \ \ \ v= r_0^2/2 \\ (D) = +\frac{1}{2}\Bigg[R^2\ln(\sqrt{2}aR)-r^2\ln(\sqrt{2}ar) + \frac{1}{2}(r^2-R^2)\Bigg] $$
$$I(r) = (A)+(B)+(C)+(D) = -\frac{1}{2}R^2\ln(\sqrt{2}rR) + \frac{1}{4}\bigg(r^2-\Big(\frac{a^2}{r}\Big)\bigg) + \frac{1}{2}R^2\ln(\sqrt{2}aR) \\ u(r,\theta) = \frac{1}{4r^2}\Bigg[r^4 + R^2r^2\ln(a/r) - a^4\Bigg] $$
This solution satisfies the boundary condition: $u(r=a,\theta) = 0$
What it doesn't satisfy is the Poisson Equation (in polar coordinates):
$$\nabla^2 u(r,\theta) = \cases{1 & $0\le r\le R \land 0 \le \theta \le 2\pi$ \\ 0} \\ = \frac{\partial^2 u(r,\theta)}{\partial r^2} + \frac{1}{r}\frac{\partial u(r,\theta)}{\partial r} \\ =1-\frac{a^4}{r^4} \ne 1$$
NOTE: $\frac{1}{4r^2}\Big(R^2r^2\ln(a/r)\Big)$ is homogeneous, as $\frac{R^2}{4}\frac{\partial^2 \ln(a/r)}{\partial^2 r} - \frac{R^2}{4r}\frac{\partial \ln(a/r)}{\partial r} = \frac{R^2}{4r^2} - \frac{1}{r}\frac{R^2}{4r} = 0$
Images of textbook pages I am reading from:


