Putting together what I've seen across different answer, I decided to piece together my own answer using an amalgamation of different workings I've seen.
Splitting up the natural log:
$$\frac{1}{4\pi}\int_0^{2\pi}\ln\Big(\frac{a^2}{r_0^2}\frac{r^2+r_0^2-2rr_0\cos\theta_0}{r^2+\frac{a^4}{r_0^2}-2\frac{r}{r_0}a^2\cos\theta_0}\Big) = \frac{1}{4\pi}\int_0^{2\pi}\ln\Big(\frac{a_1}{a_2}\frac{b_1-c_1\cos\theta_0}{b_2-c_2\cos\theta_0}\Big)d\theta_0 \\ = \frac{1}{4\pi}\Bigg[\underbrace{\int_0^{2\pi}\Big(\ln(a_1)+\ln(b_1-c_1\cos\theta_0)\Big)d\theta_0}_{(1)}-\underbrace{\int_0^{2\pi}\Big(\ln(a_2)-\ln(b_2-c_2\cos\theta_0)\Big)d\theta_0}_{(2)}\Bigg]$$
Starting with (1) by following from Claude's setup:
$$\cases{I(b_1,c_1) = \int_0^{2\pi}\ln(b_1-c_1\cos\theta_0)d\theta_0
\\
I'(b_1,c_1) = \frac{\partial}{\partial c_1} I(b_1,c_1)}
\\
\text{We'll also use: }\int_0^c I'(b_1,c_1)dc_1 = I(b_1,c_1) - I(b_1,0) \rightarrow I(b_1,c_1) = I(b_1,0) + \int_0^c I'(b_1,c_1)dc
\\
\text{And we can change the order of integration if we replace $c_1$ with a dummy variable : }
\\I(b_1,c_1) = I(b_1,0) + \int_0^{2\pi} \Big(\int_0^c \frac{\partial}{\partial x'} f(b_1,x',\theta_0) dx' \Big)d\theta_0 = I(b_1,0) + \int_0^c \int_0^{2\pi} f(b_1,x',\theta_0)_{x'} d\theta_0 dx'$$
Solving the double integral can be done via half-angle tan substitution:
$$I(b_1,c_1) = \int_0^c \int_{-\pi}^{\pi}\frac{\cos\theta_0}{x'\cos\theta_0-b_1}d\theta_0 dx' \\ = \int_0^c\Bigg(-\frac{b_1}{x'}\int_{-\infty}^{\infty}\frac{dt}{(b_1-x')+(b_1+x')t^2}dt + \frac{2\pi}{x'}\Bigg)dx' \\
= \int_0^c\Bigg(-\frac{b_1}{x'(b_1+x')}\int_{-\infty}^{\infty}\frac{2dt}{\frac{b_1-x'}{b_1+x'}+t^2}dt + \frac{2\pi}{x'}\Bigg)dx' \\
= \int_0^c\Bigg(-\frac{2b_1}{x'\sqrt{b_1^2-x'^2}}\int_{-\infty}^{\infty}\frac{dt}{1+\Bigg(\frac{t}{\sqrt{\frac{b_1-x'}{b_1+x'}}}\Bigg)^2}dt + \frac{2\pi}{x'}\Bigg)dx' \\
=\boxed{2\pi\int_0^c \frac{1}{x'}-\frac{b_1}{x'\sqrt{b_1^2-x'^2}}dx'}$$
where we've used polynomial division to turn $\frac{\cos\theta_0}{c_1\cos\theta_0-b_1} = \frac{1}{x'}-\frac{b_1}{x'(b_1-x'\cos\theta_0)}$ prior to integrating to make the integrand a little easier to work with.
The next step is to then integrate $2\pi\int_0^c \frac{1}{x'}-\frac{b_1}{x'\sqrt{b_1^2-x'^2}} dx'$ which can be done using simple substitution:
$$2\pi\int_0^c \frac{1}{x'^2}\Bigg(1-\frac{b_1}{\sqrt{b_1^2-x'^2}}\Bigg) x'dx' \\
u^2 = b_1^2-x^2, -udu = x'dx \\
= -2\pi\int_{b_1}^\sqrt{b_1^2-c^2} \frac{1}{(b_1^2-u^2)}\Bigg(1-\frac{b_1}{u}\Bigg) udu \\
= 2\pi\int_{b_1}^\sqrt{b_1^2-c^2} \frac{1}{(b_1+u)(b_1-u)}\Bigg(b_1-u\Bigg) udu \\
v = b_1+x', dv = dx' \\
2\pi\int_{2b_1}^{b_1+\sqrt{b_1^2-c^2}} \frac{dv}{v} \\
= 2\pi\ln\Bigg(\frac{b_1+\sqrt{b_1^2-c^2}}{2b_1}\Bigg)$$
Now subtract off $I(b_1,0) = \int_0^{2\pi} ln(b_1) d\theta_0$
$$\boxed{I(b_1,c_1) = 2\pi\ln\Bigg(\frac{b_1+\sqrt{b_1^2-c_1^2}}{2}\Bigg)}
\\
\boxed{I(b_2,c_2) = 2\pi\ln\Bigg(\frac{b_2+\sqrt{b_2^2-c_2^2}}{2}\Bigg)}$$
And combining the natural logs together:
$$\frac{1}{2}\Bigg(\frac{a_1}{a_2}\frac{\frac{b_1+\sqrt{b_1^2-c_1^2}}{2}}{\frac{b_2+\sqrt{b_2^2-c_2^2}}{2}}\Bigg)$$
Just cancel out the 2s and:
$$I(b_1,c_1,b_2,c_2) = \frac{1}{2}\ln\Bigg(\frac{a_1}{a_2}\frac{b_1+\sqrt{b_1^2-c_1^2}}{b_2+\sqrt{b_2^2-c_2^2}}\Bigg)$$
Below is going to be a way to rewrite this result so that it becomes significantly easier for subsequent integration:
Rewriting this is in terms of $r$, $a$, and $r_0$:
$$-\frac{1}{2}\ln\Bigg(\frac{a^2}{r_0^2}\frac{r^2+\frac{a^4}{r_0^2}+\sqrt{\Big(r^2+\frac{a^4}{r_0^2}\Big)^2-4\Big(\frac{r}{r_0}a^2\Big)^2}}{r^2+r_0^2+\sqrt{(r^2+r_0^2)^2-4(rr_0)^2}}\Bigg)
\\
= -\frac{1}{2}\ln\Bigg(\frac{a^2}{r_0^2}\frac{r^2+\frac{a^4}{r_0^2}+\sqrt{\Big(r^4+2r^2\frac{a^4}{r_0^2}+a^4(\frac{a}{r_0})^4\Big)-4\Big(\frac{r}{r_0}a^2\Big)^2}}{r^2+r_0^2+\sqrt{(r^4+2r^2r_0^2+r_0^4)-4(rr_0)^2}}\Bigg)
\\
= -\frac{1}{2}\ln\Bigg(\frac{a^2}{r_0^2}\frac{r^2+\frac{a^4}{r_0^2}+\sqrt{r^4+a^4(\frac{a}{r_0})^4-2\Big(\frac{r}{r_0}a^2\Big)^2}}{r^2+r_0^2+\sqrt{r^4+r_0^4-2(rr_0)^2}}\Bigg)
\\
=-\frac{1}{2}\ln\Bigg(\frac{a^2}{r_0^2}\frac{r^2+\frac{a^4}{r_0^2}+\sqrt{\Big(r^2-a^2(\frac{a}{r_0})^2\Big)^2}}{r^2+r_0^2+\sqrt{\Big(r^2-r_0^2\Big)^2}}\Bigg)
\\
=-\frac{1}{2}\ln\Bigg(\frac{a^2}{r_0^2}\frac{r^2+\frac{a^4}{r_0^2}+|(r)^2-\Big(\frac{a^2}{r_0}\Big)^2|}{r^2+r_0^2+|(r)^2-(r_0)^2|}\Bigg)$$
$$\boxed{I(r,r_0) = -\frac{1}{2}\ln\Bigg(\frac{r_0^2}{a^2}\frac{r^2+\frac{a^4}{r_0^2}+|r^2-\Big(\frac{a^2}{r_0}\Big)^2|}{r^2+r_0^2+|r^2-(r_0)^2|}\Bigg)}$$