Let A,B,C,D be 2×2 matrices. If $AD-BC$ = $I_2$ is it true that $\begin{pmatrix} A & B \\ C & D\end{pmatrix}^{-1}$ = $\begin{pmatrix} D & -B \\ -C & A\end{pmatrix}$ ?"
My approach: Let $M=\begin{pmatrix} A & B \\ C & D\end{pmatrix}$ and $N=\begin{pmatrix} D & -B \\ -C & A\end{pmatrix}$. I then check if $MN$ equals $I_4$, but find that $MN=\begin{pmatrix} AD - BC & -AB + BA \\ CD - DC & -CB + DA \end{pmatrix}$. Does this mean the proposition is false? (I assume so because BC does not generally equal CB, and similarly, AB does not generally equal BA.)