An orthogonal matrix consists of pairwise orthogonal rows and columns. So they form an orthogonal basis as images of the unit vectors which fall in two categories, volume form $\pm 1$, its coefficent is the determinant, that counts reflections in the basis mod 2.
Correcting the determinant to 1 by multiplying the matrix with a unit matrix with one entry changed to $-1$ with the effect, that a row from left or a column from right changes sign.
By Eulers theorem in three dimensions, a proper rotation is a rotation by an angle $\chi$ around a unit vector in spherical coordinates on the upper semi-sphere is
$$\vec n =\left(\sin\theta \cos\phi ,\ \ \sin\theta \sin\phi,\ \ \cos \theta \right), \quad 0 \ < \ \theta \ < \ \frac{\pi}{2}, \quad 0<\phi<2\pi.$$
The angle of rotation in the 1-2-plane
$$A=\left(
\begin{array}{ccc}
\cos \chi & -\sin \chi & 0\\
\sin \chi & \cos \chi & 0 \\
0 & 0 & 1
\end{array}\right)$$
obviously is given by the trace
$$1+2 \ \cos \chi = \text{Tr}( A) $$
Trace and determinant as commutative maps involving sum and products of eigenvalues only, are invariant under rotations.
It's possible now, to determine the two angles of the rotation axis by taking traces with the Lie-basis
$$\left( L_i\right)_{\alpha \beta}=\delta_{i\alpha} - \delta_{i\beta}$$
$$L=\left\{\text{L1}\ = \ \left(
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0 \\
\end{array}
\right),\quad \text{L2} \ = \ \left(
\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0 \\
\end{array}
\right),\quad \text{L3}\ = \ \left(
\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}
\right)\right\}$$
A rotation matrix with the 3-axis is the matrix exponential
$$\text{SO3}(\chi,\ (0,0,1)) = e^{\chi \ L3}= Id_3 \ + \ (\cos\chi -1) \ L_3^2 \ + \ L3 \ \sin\chi \ = \ A $$
We conclude from spherical symmetry that the general rotation matrix is the exponential of the linear combination of the 3 generators with the components of axis vector by the general commutativity of powers and roations and there for with functions
$$O_3 f( x ) O^{-1} = f(O_3 x \ \ O^{-1}) \quad \text {by} \ O x x O^{-1}=O x O O^{-1} x O{-1}= (O x O^{-1}) ^2$$
we can construct the rotation matrix in $SO(3)$ by the exponential of of the generators, the three antisymmetric unit matrices
$$\text{SO}_3\left(\chi ,\ (\theta \,\phi )\right)=e^{\chi\ * (\text{L1} \ \sin (\theta ) \ \cos (\phi )\ + \ \text{L2} \ \sin (\theta ) \ \sin (\phi ) \ + \ \text{L3} \ \cos (\theta ))}$$

The angle of rotation and the polar angles of the rotation axis can be retrieved via the linear form of taking the trace of products with the basis of Lie-matrix algebra. Using Mathematica, the eigenvalues are
Eigensystem[Subscript[SO, 3][\[Chi], {\[Theta], \[Phi]}]][[1]]
$$\left\{1,e^{-2 i \chi },e^{2 i \chi }\right\}$$
and as a check the first eigenvector corresponding to the eigenvalue 1
Eigensystem[Subscript[SO, 3][\[Chi], {\[Theta],\[Phi]}]][[2,1]]
$$\{\tan (\theta ) \ \cos (\phi ),\ \tan (\theta ) \ \sin (\phi ), \ 1\}$$
The traces with the Lie-basis yields
$$\begin{align}
&\text{Tr}\left[\text{SO}_3(\chi ,\{\theta ,\phi \})\right] \ = \ -2 \ \cos (2 \chi )+1 \\
&\text{Tr}\left[\text{L1}.\text{SO}_3(\chi ,\{\theta ,\phi \})\right] \ = \ -2 \ \sin (\theta ) \sin (2 \chi ) \ \cos (\phi ) \\
& \text{Tr}\left[\text{L2}.\text{SO}_3(\chi ,\{\theta ,\phi \})\right] \ = \ -2 \ \sin (\theta ) \sin (2 \chi ) \ \sin (\phi ) \\
&\text{Tr}\left[\text{L3}.\text{SO}_3(\chi ,\{\theta ,\phi \})\right] \ = \ -2 \ \cos (\theta ) \ \sin (2 \chi ) \\
\end{align}$$
By the usual trigonmetrics
$$\begin{align}
&\cos \chi \ = \ \frac{1}{2}\ (\text{Tr}[O]-1) \\
&\sin^2 \chi \ =1-\frac{1}{4} (\text{Tr}[O]-1)^2 \\
&\tan \phi \ = \ \frac{\text{tr}_2}{\text{tr}_1} \\
&\sin^2 \theta \ = \ \frac{\text{tr}_2^2+\text{tr}_3^2}{4-(\text{Tr}(O)-1)^2} \\
\end{align}$$