6

IMO 1969 Longlist problem 38:

Let $r$ and $m$ ($r \leq m$) be natural numbers and $A_k = \frac{2k-1}{2m}\pi$.

Evaluate $$\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\sin(rA_k)\sin(rA_l)\cos(rA_k - rA_l)$$

My solution to the problem progresses as follows

$$\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\sin(rA_k)\sin(rA_l)\cos(rA_k - rA_l)$$ $$\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\frac{\cos(rA_k - rA_l) - \cos(rA_k + rA_l)}{2}\times\cos(rA_k - rA_l)$$ $$\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\frac{\cos^2(rA_k - rA_l) - \cos(rA_k + rA_l)\cos(rA_k - rA_l)}{2}$$ $$\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\frac{\cos^2(rA_k - rA_l) - \cos^2(rA_k + rA_l) - \cos^2(rA_k - rA_l) + 1}{2}$$ $$\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\frac{\sin^2(rA_k + rA_l)}{2}$$ $$\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\frac{1-\cos(2rA_k + 2rA_l)}{4}$$ $$\frac{1}{m^2}\sum_{k=1}^{m}\Biggl(\frac{m}{4} - \frac{1}{4}\Bigr(\cos(2rA_k + 2rA_1) + \cos(2rA_k + 2rA_2) + \cdots + \cos(2rA_k + 2rA_m)\Bigl)\Biggr)$$ $$\frac{1}{m^2}\sum_{k=1}^{m}\Biggl(\frac{m}{4}-\frac{1}{4}\Bigr(\cos(\frac{r\pi(2k-1)}{m} + \frac{r\pi}{m}) + \cos(\frac{r\pi(2k-1)}{m} + \frac{3r\pi}{m}) + \cdots + \cos(\frac{r\pi(2k-1)}{m} + \frac{(2l-1)\pi r}{m})\Bigl)\Biggr)$$ $$\frac{1}{m^2}\sum_{k=1}^{m}\Biggl(\frac{m}{4}-\frac{1}{4}\frac{\sin(\pi r)}{\sin(\pi r/m)}\cos\Bigl(\pi r(\frac{2k + m - 1}{m})\Bigr)\Biggr)$$

After this it is quite easy to say that another arithmetic progression is forming in cosine which can also be simplified but i seem to not get a integer solution to the problem and the solution is neither available in the IMO compendium nor did i find any solution on the internet could someone please check if i have done any mistakes or is the answer not an integer if so, i would be highly grateful.

Any help would be highly appreciated!

Sahaj
  • 5,355
koiboi
  • 384
  • $$\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\sin(rA_k)\sin(rA_l)\cos(rA_k - rA_l)=\begin{cases} 1, & r=m \ \frac{1}{4}, & r<m \end{cases}$$ – gpmath Jun 26 '24 at 19:00
  • @gpmath, does my solution when proceeded with yield the same answer? – koiboi Jun 27 '24 at 01:13
  • unfortunately no. – gpmath Jun 27 '24 at 04:41
  • @gpmath could you point out where my mistake is? – koiboi Jun 27 '24 at 07:38
  • The double sum evaluates to $$\frac{m^2+\sin ^2(\pi r) \csc ^2\left(\frac{\pi r}{m}\right)-m \sin (2 \pi r) \csc \left(\frac{\pi r}{m}\right)}{4 m^2}$$ Don't know what you did wrong. – gpmath Jun 27 '24 at 14:54
  • @gpmath could you post your solution because my final answer is pretty close to what you evaluated – koiboi Jul 01 '24 at 10:49
  • @gpmath my answer comes out to be the following $$\frac{m^2 - sin^2(\pi r)\csc^2((\pi r)/m)\cos(2\pi r)}{4m^2}$$ – koiboi Jul 01 '24 at 10:59
  • I guess an error in your calculations happened when you replaced $- \cos(rA_k + rA_l)\cos(rA_k - rA_l)$ by $- \cos^2(rA_k + rA_l) - \cos^2(rA_k - rA_l) + 1$. – Alex Ravsky Jul 02 '24 at 03:38
  • @koiboi if you feel satisfied by any of the answers you can consider accepting. – Sahaj Jul 08 '24 at 11:53

3 Answers3

2

Let $S$ be the required sum. Then

$$m^2S=\sum_{k=1}^{m}\sum_{l=1}^{m}\sin rA_k \sin rA_l \cos(rA_k - rA_l)=$$

$$\sum_{k=1}^{m}\sum_{l=1}^{m}\sin rA_k \sin rA_l (\cos rA_k \cos rA_l + \sin rA_k \sin rA_l)=$$ $$\left(\sum_{k=1}^{m} \sin rA_k \cos rA_k \right)\left(\sum_{l=1}^{m} \sin rA_l \cos rA_l \right)+$$ $$ \left(\sum_{k=1}^{m} \sin^2 rA_k \right)\left(\sum_{l=1}^{m} \sin^2 rA_l \right).$$ The latter sum is equal to $S_1^2+S_2^2,$ where $$S_1=\sum_{k=1}^{m} \sin rA_k \cos rA_k=\frac 12\sum_{k=1}^{m} \sin 2rA_k$$ and $$S_2=\sum_{k=1}^{m} \sin^2 rA_k=\frac 12\sum_{k=1}^{m} 1-\cos 2rA_k.$$

For each natural $k\le m$ let $$Z_k=(\sin 2rA_k,\cos 2rA_k)=\left(\sin\frac{(2k-1)r\pi}m,\cos\frac{(2k-1)r\pi}m\right)$$ be a point of the unit circle centered at the origin $(0,0)$.

When $r=m$ then $Z_k=(\sin\pi,\cos\pi)=(0,-1)$ for each natural $k\le m$, so $S_1=0$, $S_2=m$, and $S=1$.

Suppose now that $r<m$. Then for each natural $k<m$ the point $Z_{k+1}$ is the point $Z_k$ rotated counterclockwise around the origin by the angle $\alpha=\frac{2r\pi}m\in (0,2\pi)$. Since $m\alpha=2r\pi$, this rotation maps the set $\{Z_1,Z_2,\dots,Z_m\}$ into itself. Therefore this rotation preserves its sum $$X=\sum_{k=1}^{m} Z_k=\left(\sum_{k=1}^{m} \sin 2rA_k,\sum_{k=1}^{m} \cos 2rA_k\right).$$ Since $\alpha\in (0,2\pi)$, we have $X=0$, so $S_1=0$, $S_2=\frac m2$, and $S=\frac 14$.

Alex Ravsky
  • 106,166
2

Lemma: $$\sum_{n=1}^{m} \sin(a + nd) = \frac{\sin\left(\frac{md}2\right)\sin\left(\frac{2a + md + d}2\right)}{\sin\left(\frac{d}2\right)}$$ $$\sum_{n=1}^{m} \cos(a + nd) = \frac{\sin\left(\frac{md}2\right)\cos\left(\frac{2a + md + d}2\right)}{\sin\left(\frac{d}2\right)}$$

Proof: Consider the LHS of both equations scaled by a multiplication of $\sin\left(\frac{d}2\right)$. Upon using the identities for $\sin(a)\sin(b)$ and $\sin(a)\cos(b)$ for the first and second qualities respectively one finds that the sums telescope and yield the lemma.

To your problem, defining $A_k = \frac{2k-1}{2m}\pi$, one has $$\begin{align}m^2S&:= \sum_{k=1}^m \sum_{l=1}^m \sin(rA_k)\sin(rA_l) \cos(rA_k - rA_l) \\ m^2S &= \sum_{k=1}^m \sum_{l=1}^m \sin(rA_k)\sin(rA_l)\left(\cos(rA_k)\cos(rA_l) + \sin(rA_k)\sin(rA_l)\right) \tag{1.1}\\ m^2S &= \sum_{k=1}^m \sin(rA_k)\cos(rA_k)\sum_{l=1}^m \sin(rA_l)\cos(rA_l) + \sum_{k=1}^m \sin^2(rA_k) \sum_{l=1}^m \sin^2(rA_l) \tag{1.2}\\ m^2S &= \left(\sum_{k=1}^m \sin(rA_k)\cos(rA_k)\right)^2 + \left(\sum_{k=1}^m \sin^2(rA_k)\right)^2 \tag{1.3} \\ m^2S &= \frac14\left(\sum_{k=1}^m 2\sin(rA_k)\cos(rA_k)\right)^2 + \frac14\left(\sum_{k=1}^m 2\sin^2(rA_k)\right)^2 \iff \\ 4m^2S &= \left(\sum_{k=1}^m \sin(2rA_k)\right)^2 + \left(\sum_{k=1}^m 1-\cos(2rA_k)\right)^2 \tag{1.4} \\ 4m^2S &= \left(\sum_{k=1}^m \sin\left(\frac{r}{m}(2k-1)\pi\right)\right)^2 + \left(m - \sum_{k=1}^m \cos\left(\frac{r}{m}(2k-1)\pi\right)\right)^2 \tag{1.5}\\ 4m^2S &= \left(\sum_{k=1}^m \sin\left(\frac{2r\pi}{m}k - \frac{r\pi}{m}\right)\right)^2 + \left(m - \sum_{k=1}^m \cos\left(\frac{2r\pi}{m}k - \frac{r\pi}{m}\right)\right)^2 \\ 4m^2S &= \csc^2\left(\frac{r\pi}{m}\right)\cdot \sin^4\left(r\pi\right) + \left(m - \sin(r\pi)\cos(r\pi)\csc\left(\frac{r\pi}{m}\right)\right)^2 \tag{1.6} \ \ \ \ \ \ \ (\not\exists p\in\mathbb Z : r=mp)\\ S &= \frac{m^2 + \csc^2\left(\frac{r\pi}{m}\right)\sin^2(r\pi) - m\sin(2r\pi)\csc\left(\frac{r\pi}{m}\right)}{4m^2} \tag{1.7} \end{align}$$

But if $\exists p \in \mathbb Z: r=mp$ then at $(1.5)$ the lemma can not be applied; instead $$\begin{align} 4m^2S &= \left(\sum_{k=1}^m \color{green}{\sin(p(2k-1)\pi)}\right)^2 + \left(m - \sum_{k=1}^m \color{pink}{\cos(p(2k-1)\pi)}\right)^2 \\ 4m^2S &= \left(\sum_{k=1}^m \color{green}{0}\right)^2 + \left(m - \sum_{k=1}^m \color{pink}{\pm 1}\right)^2 \tag{1.8}\\ 4m^2S &= \begin{cases}0 & p\text{ is even} \\ 4m^2 & p\text{ is odd}\end{cases}\end{align}$$

Thus, we can combine all three results into one "short" form:

$$\boxed{S = \begin{cases}0 & \frac{r}{m} \text{ is even} \\ \\ 1 &\frac{r}{m}\text{ is odd} \\ \\ \frac{m^2 + \csc^2\left(\frac{r\pi}{m}\right)\sin^2(r\pi) - m\sin(2r\pi)\csc\left(\frac{r\pi}{m}\right)}{4m^2} & \frac{r}{m} \notin \mathbb Z\end{cases}}$$

This is the most general closed-form of this summation. When $0<r<m$ with $r, m \in \mathbb Z$ we have that the last case applies from the closed form of $S$ and since $\sin(r\pi) = 0$, all but one of the terms vanish and we are left with $S= \frac14$. When $r=m$ we have that the second case applies of the closed form of $S$ and we get $S=1$.

Explanations:

$(1.1)$ follows from the compound $\cos$ identity.

$(1.2)$ and $(1.3)$ follow from distributivity of addition over multiplication.

$(1.4)$ follows via the identity $2\sin(a)\cos(a) = \sin(2a)$ and $\sin^2(a) = 1-\cos(2a)$.

$(1.6)$ follows from applying aforesaid lemma. The restraint comes from that $\csc$ must be defined for this formula to hold. The other case is also handled.

$(1.7)$ using $(a+b)^2 = a^2 + b^2 + 2ab$, regrouping, and using $\sin^2(r\pi) = \sin^4(r\pi) + \sin^2(r\pi)\cos^2(r\pi)$.

$(1.8)$ for any integer $n$, $\sin(nx) = 0$; if $n$ is odd then $\cos(nx) = -1$ and if $n$ is even then $\cos(nx) = 1$.

Sahaj
  • 5,355
1

I'm going to first point out a mistake in your solution, and then write my solution.

I think there is a mistake in the step from $$\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\frac{\cos^2(rA_k - rA_l) - \cos(rA_k + rA_l)\cos(rA_k - rA_l)}{2}\tag1$$ to $$\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\frac{\cos^2(rA_k - rA_l) - \cos^2(rA_k + rA_l) - \cos^2(rA_k - rA_l) + 1}{2}\tag2$$

For $r=m=2$ for example, we have $(1)=1$ while $(2)=0$.


In the following, I'm going to write my solution.

We have, as written in Alex Ravsky's answer,

$$\begin{align}&\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\sin(rA_k)\sin(rA_l)\cos(rA_k-rA_l) \\\\&=\frac{1}{m^2}\sum_{k=1}^{m}\sum_{l=1}^{m}\sin(rA_k)\sin(rA_l)\bigg(\cos(rA_k)\cos(rA_l)+\sin(rA_k)\sin(rA_l)\bigg) \\\\&=\frac{1}{m^2}\sum_{k=1}^{m}\sin(rA_k)\cos(rA_k)\sum_{l=1}^{m}\sin(rA_l)\cos(rA_l)+\frac{1}{m^2}\sum_{k=1}^{m}\sin^2(rA_k)\sum_{l=1}^{m}\sin^2(rA_l) \\\\&=\frac{1}{m^2}A^2+\frac{1}{m^2}B^2\end{align}$$

where $$A=\sum_{k=1}^{m}\sin(rA_k)\cos(rA_k),B=\sum_{k=1}^{m}\sin^2(rA_k)$$

For $r=m$, we have $A=0$ and $B=m$.

For $r\lt m$, using this, we have $$\begin{align}A&=\sum_{k=1}^{m}\sin(rA_k)\cos(rA_k) \\\\&=\sum_{k=1}^{m}\frac 12\sin(2rA_k) \\\\&=\frac 12\sum_{k=1}^{m}\sin\bigg(-\frac{r\pi}{m}+k\cdot\frac{2r\pi}{m}\bigg) \\\\&=-\frac 12\sin\bigg(-\frac{r\pi}{m}\bigg)+\frac 12\sum_{k=\color{red}0}^{m}\sin\bigg(-\frac{r\pi}{m}+k\cdot\frac{2r\pi}{m}\bigg) \\\\&=-\frac 12\sin\bigg(-\frac{r\pi}{m}\bigg)+\frac 12\sin\bigg(-\frac{r\pi}{m}\bigg) \\\\&=0\end{align}$$ and $$\begin{align}B&=\sum_{k=1}^{m}\sin^2(rA_k) \\\\&=\sum_{k=1}^{m}\frac{1-\cos(2rA_k)}{2} \\\\&=\frac m2-\frac 12\sum_{k=1}^{m}\cos\bigg(-\frac{r\pi}{m}+k\cdot\frac{2r\pi}{m}\bigg) \\\\&=\frac m2+\frac 12\cos\bigg(-\frac{r\pi}{m}\bigg)-\frac 12\sum_{k=\color{red}0}^{m}\cos\bigg(-\frac{r\pi}{m}+k\cdot\frac{2r\pi}{m}\bigg) \\\\&=\frac m2+\frac 12\cos\bigg(-\frac{r\pi}{m}\bigg)-\frac 12\cos\bigg(-\frac{r\pi}{m}\bigg) \\\\&=\frac m2\end{align}$$

Therefore, the answer is $$\color{red}{\begin{cases}\dfrac 14&\text{if $r\lt m$}\\1&\text{if $r=m$}\end{cases}}$$

mathlove
  • 151,597
  • To the downvoter, can you explain why you downvoted my answer so that I can improve my answer? – mathlove Jul 09 '24 at 03:18
  • How unfortunate that all three answers were downvoted without explanation. The bounty too was left un-rewarded. – Sahaj Jul 09 '24 at 13:39