We can indeed exploit some trigonometric identities (terms and conditions apply):
$$\begin{align*}
\arcsin\left(x\sqrt{1-y^2} + y \sqrt{1-x^2}\right) &= \arcsin x + \arcsin y \tag{$*$} \\
\arcsin\sqrt{1-x^2} = \arccos x &= \frac\pi2 - \arcsin x
\end{align*}$$
Together, these let us rewrite the equation as
$$\arcsin a + \arcsin b + \arcsin c = \frac\pi2$$
where $(a,b,c)=(2x,9x,12x)$. Further application of $(*)$ allows us to recover more equations,
$$\begin{align*}
a\sqrt{1-b^2} + b\sqrt{1-a^2} &= \sqrt{1-c^2} & (\rm OP)\\
b\sqrt{1-c^2} + c\sqrt{1-b^2} &= \sqrt{1-a^2} \\
a\sqrt{1-c^2} + c\sqrt{1-a^2} &= \sqrt{1-b^2}
\end{align*}$$
By substitution, e.g. $\sqrt{1-b^2}$ from the third equation into the first, we can recover (one of) the suggested solution(s),
$$\begin{align*}
a\left(a\sqrt{1-c^2} + c\sqrt{1-a^2}\right) + b\sqrt{1-a^2} &= \sqrt{1-c^2} \\
(ac+b) \sqrt{1-a^2} &= \sqrt{1-c^2} (1-a^2) \\
ac+b &= \sqrt{1-a^2} \sqrt{1-c^2} \\
(ac+b)^2 &= (1-a^2)(1-c^2) \\
a^2 + b^2 + c^2 &= 1 - 2abc
\end{align*}$$
$$\implies 432x^3 + 229x^2 - 1 = 0$$
$x=\dfrac1{16}$ is a solution to this cubic. One can use the rational root theorem to deduce this, though I suspect there's a more efficient method.