7

Let $G$ be a group such that $(ab)^2=b^2a^2 \forall a,b\in G $ then $G$ is abelian?

I tried to find a counterexample, but nothing came up. Hence I tried to prove it.

We have $(aba^-)^2=ab^2a^- $ and by definition $((ab)a^-)^2= a^{-2} (ab)^2=a^{-2}b^2a^2$
So $ ab^2a^-=a^{-2} b^2 a^2 $ gives $a^3 b^2=b^2 a^3 \forall a ,b \in G$

Update : $(ab)^3 =a(ba)^2b=a(a^2b^2)b=a^3b^3 $

So $(ab)^3=a^3b^3 \forall a, b \in G $

Again $(ab)^4=(b^2 a^2)^2=a^4 b^4 \forall a ,b \in G$

Stuck from here. I think I am missing something trivial. Please guide.

cpiegore
  • 1,556
user-492177
  • 3,019

3 Answers3

6

We can search with GAP for examples in the small group library:

#!/usr/bin/env gap

LoadPackage("SONATA") ;; LoadPackage("ctbllib") ;;

idInG := function(el,els) local i ; for i in [1..Length(els)] do if el = els[i] then return i ; fi ; od; return -1 ; end;;

irrforgroup := function(g) local a,b,gid,eqSq,els,s1,s2 ;

    if not IsAbelian(g) then
            els := Elements(g) ;;
            gid :=  IdGroup(g) ;;
            eqSq := true ;;

            for a in els do
            for b in els do
                    s1 := a*b*a*b ;;
                    s2 := b*b*a*a ;;
                    if s1 <> s2 then
                            eqSq := false ;;
                    fi;
            od;;
            od;;
            if not eqSq then
                    return false ;;
            else
                    Print(Order(g)," ",StructureDescription(g),"\n") ;
                    for a in els do
                            for b in els do
                                    s1 := a*b ;;
                                    Print(String(idInG(s1,els),3)) ;
                            od;;
                            Print("\n") ;
                    od;;
                    return true ;;
            fi ;
    else
            return true ;;
    fi ;

end;;

for n in [2..30] do alls := AllSmallGroups(n) ; for g in alls do irrforgroup(g) ; od ; od;

and this finds 2 groups of order 27 in all groups up to order 30 which are not abelian but have $(ab)^2=b^2a^2$ for all group elements $a$ and $b$. The Cayley tables are:

27 (C3 x C3) : C3
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
  2  5  6  7  1 11 12 13 14 15  3  4 18 19 20 21 22  8  9 10 24 25 26 16 17 27 23
  3 14  8  9 25 21 22  1 16 17 27 11  7 26  6  4 23 20 18 19 15 13 10  5 24  2 12
  4  7  9 10 12 14 15 16 17  1 19 20 21 22  2 23  3 24 25  5 26  6  8 27 11 13 18
  5  1 11 12  2  3  4 18 19 20  6  7  8  9 10 24 25 13 14 15 16 17 27 21 22 23 26
  6 19 13 14 17 24 25  2 21 22 23  3 12 27 11  7 26 10  8  9 20 18 15  1 16  5 4
  7 12 14 15  4 19 20 21 22  2  9 10 24 25  5 26  6 16 17  1 27 11 13 23  3 18 8
  8 26  1 16 24 15 13  3  4 23 12 27 22  2 21  9 10 19 20 18  6  7 17 25  5 14 11
  9 22 16 17 11 26  6  4 23  3 18 19 15 13 14 10  8  5 24 25  2 21  1 12 27  7 20
 10 15 17  1 20 22  2 23  3  4 25  5 26  6  7  8  9 27 11 12 13 14 16 18 19 21 24
 11  9 18 19 22 16 17  5 24 25 26  6  4 23  3 12 27 15 13 14 10  8 20  2 21  1 7
 12  4 19 20  7  9 10 24 25  5 14 15 16 17  1 27 11 21 22  2 23  3 18 26  6  8 13
 13 27  2 21 16 20 18  6  7 26  4 23 25  5 24 14 15  9 10  8 11 12 22 17  1 19 3
 14 25 21 22  3 27 11  7 26  6  8  9 20 18 19 15 13  1 16 17  5 24  2  4 23 12 10
 15 20 22  2 10 25  5 26  6  7 17  1 27 11 12 13 14 23  3  4 18 19 21  8  9 24 16
 16 13  4 23 27  2 21  9 10  8 20 18  6  7 26 17  1 25  5 24 14 15  3 11 12 22 19
 17  6 23  3 19 13 14 10  8  9 24 25  2 21 22  1 16 12 27 11  7 26  4 20 18 15 5
 18 23  5 24 21 10  8 11 12 27  7 26 17  1 16 19 20 14 15 13  3  4 25 22  2  9 6
 19 17 24 25  6 23  3 12 27 11 13 14 10  8  9 20 18  2 21 22  1 16  5  7 26  4 15
 20 10 25  5 15 17  1 27 11 12 22  2 23  3  4 18 19 26  6  7  8  9 24 13 14 16 21
 21 18  7 26 23  5 24 14 15 13 10  8 11 12 27 22  2 17  1 16 19 20  6  3  4 25 9
 22 11 26  6  9 18 19 15 13 14 16 17  5 24 25  2 21  4 23  3 12 27  7 10  8 20 1
 23 21 10  8 18  7 26 17  1 16  5 24 14 15 13  3  4 11 12 27 22  2  9 19 20  6 25
 24  8 12 27 26  1 16 19 20 18 15 13  3  4 23 25  5 22  2 21  9 10 11  6  7 17 14
 25  3 27 11 14  8  9 20 18 19 21 22  1 16 17  5 24  7 26  6  4 23 12 15 13 10 2
 26 24 15 13  8 12 27 22  2 21  1 16 19 20 18  6  7  3  4 23 25  5 14  9 10 11 17
 27 16 20 18 13  4 23 25  5 24  2 21  9 10  8 11 12  6  7 26 17  1 19 14 15  3 22

and

27 C9 : C3
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
  2  5  6  7  4 11 12 13 14 15  9 10 18 19 20 21 22 16 17  1 24 25 26 23  3 27 8
  3 14  8  9 25 21 22  1 16 17 27 11  7 26  6  4 23 20 18 19 15 13 10  5 24  2 12
  4  7  9 10 12 14 15 16 17  1 19 20 21 22  2 23  3 24 25  5 26  6  8 27 11 13 18
  5  4 11 12  7  9 10 18 19 20 14 15 16 17  1 24 25 21 22  2 23  3 27 26  6  8 13
  6 19 13 14  3 24 25  2 21 22  8  9 12 27 11  7 26  1 16 17 20 18 15  4 23  5 10
  7 12 14 15 10 19 20 21 22  2 17  1 24 25  5 26  6 23  3  4 27 11 13  8  9 18 16
  8 26  1 16 24 15 13  3  4 23 12 27 22  2 21  9 10 19 20 18  6  7 17 25  5 14 11
  9 22 16 17 11 26  6  4 23  3 18 19 15 13 14 10  8  5 24 25  2 21  1 12 27  7 20
 10 15 17  1 20 22  2 23  3  4 25  5 26  6  7  8  9 27 11 12 13 14 16 18 19 21 24
 11 17 18 19  6 23  3  5 24 25 13 14 10  8  9 12 27  2 21 22  1 16 20  7 26  4 15
 12 10 19 20 15 17  1 24 25  5 22  2 23  3  4 27 11 26  6  7  8  9 18 13 14 16 21
 13 27  2 21 23 20 18  6  7 26 10  8 25  5 24 14 15 17  1 16 11 12 22  3  4 19 9
 14 25 21 22  9 27 11  7 26  6 16 17 20 18 19 15 13  4 23  3  5 24  2 10  8 12 1
 15 20 22  2  1 25  5 26  6  7  3  4 27 11 12 13 14  8  9 10 18 19 21 16 17 24 23
 16 13  4 23 27  2 21  9 10  8 20 18  6  7 26 17  1 25  5 24 14 15  3 11 12 22 19
 17  6 23  3 19 13 14 10  8  9 24 25  2 21 22  1 16 12 27 11  7 26  4 20 18 15 5
 18  8  5 24 26  1 16 11 12 27 15 13  3  4 23 19 20 22  2 21  9 10 25  6  7 17 14
 19  3 24 25 14  8  9 12 27 11 21 22  1 16 17 20 18  7 26  6  4 23  5 15 13 10 2
 20  1 25  5  2  3  4 27 11 12  6  7  8  9 10 18 19 13 14 15 16 17 24 21 22 23 26
 21 18  7 26  8  5 24 14 15 13  1 16 11 12 27 22  2  3  4 23 19 20  6  9 10 25 17
 22 11 26  6 17 18 19 15 13 14 23  3  5 24 25  2 21 10  8  9 12 27  7  1 16 20 4
 23 21 10  8 18  7 26 17  1 16  5 24 14 15 13  3  4 11 12 27 22  2  9 19 20  6 25
 24 16 12 27 13  4 23 19 20 18  2 21  9 10  8 25  5  6  7 26 17  1 11 14 15  3 22
 25  9 27 11 22 16 17 20 18 19 26  6  4 23  3  5 24 15 13 14 10  8 12  2 21  1 7
 26 24 15 13 16 12 27 22  2 21  4 23 19 20 18  6  7  9 10  8 25  5 14 17  1 11 3
 27 23 20 18 21 10  8 25  5 24  7 26 17  1 16 11 12 14 15 13  3  4 19 22  2  9 6

There are 2 groups of order 54, 6 groups of order 81 and 4 groups of order 108 in the same example category:

27 (C3 x C3) : C3
27 C9 : C3
54 C2 x ((C3 x C3) : C3)
54 C2 x (C9 : C3)
81 (C9 x C3) : C3
81 C9 : C9
81 C27 : C3
81 C3 x ((C3 x C3) : C3)
81 C3 x (C9 : C3)
81 (C9 x C3) : C3
108 C4 x ((C3 x C3) : C3)
108 C4 x (C9 : C3)
108 C2 x C2 x ((C3 x C3) : C3)
108 C2 x C2 x (C9 : C3)
```
R. J. Mathar
  • 4,450
  • Thanks sir! I didn't know about this GAP . I would highly appreciate if you can refer any source to learn – user-492177 Jun 04 '24 at 15:09
  • 1
    GAP is a freely available software from https://www.gap-system.org/ which has it's own Maple-alike command syntax – R. J. Mathar Jun 04 '24 at 15:25
  • Mathar Just one question to make sure if I am thinking correctly. The software has libraries of already built in group structures of small order . Your code is just recalling those groups and checking if the hypothesis is satisfied and that the group is non-abelian...Right ? – user-492177 Jun 04 '24 at 15:36
  • 1
    The software has a library which contains (I think) all groups up to order 1023 and others. So I'm using that library to run in the last 6 lines of the code through groups of small order, use (in my own function) a check whether a group is abelian, and if not run through all pairs of elements, multipliy the elements in the two different orders, compare the result etc. – R. J. Mathar Jun 04 '24 at 16:04
6

Note that $(ab)^2 = b^2a^2$ for given $a$ and $b$ is equivalent to $(ba)^3 = b^3a^3$. Indeed, we have that if $(ab)^2=b^2a^2$, then $$b^3a^3 = b(b^2a^2)a = b(ab)^2a = bababa = (ba)^3.$$ Conversely, if $(ba)^3 = b^3a^3$, then $$b^3a^3 = (ba)^3 = b(ab)^2a,$$ and cancelling $b$ on the left and $a$ on the right we get $b^2a^2 = (ab)^2$.

Thus, $$(ab)^2 = b^2a^2\text{ for all }a,b\in G\iff (xy)^3 = x^3y^3\text{ for all }x,y\in G.$$

Definition. Let $G$ be a group, and $n$ an integer. We say that $G$ is $n$-abelian if and only if $(ab)^n = a^nb^n$ for all $a,b\in G$; equivalently, if and only if the map $x\mapsto x^n$ defines a group endomorphism from $G$ to itself.

It is a standard exercise that a group $G$ is abelian if and only if it is $2$-abelian, if and only if it is $(-1)$-abelian. You are asking whether a $3$-abelian group is necessarily abelian. The answer is "no."

In

Alperin, J.L. A classification of $n$-abelian groups. Canad. J. Math. 21 1969 1238–1244. MR0248204 (40 #1458)

Alperin described the structure of $n$-abelian groups. A group $G$ is $n$-abelian if and only if it is a homomorphic image of a subgroup of a product of the form $A\times M\times N$, where $A$ is abelian, $M$ is a group of exponent $n-1$, and $N$ is a group of exponent $n$.

Since for any $n\gt 2$ there exist nonabelian groups of exponent $n$, it follows that for any $n\gt 2$ there exist $n$-abelian groups that are not abelian in particular, there are $3$-abelian groups that are not abelian. For example, the nonabelian group of order $p^3$ and exponent $p$ for odd prime $p$, which can be realized as the multiplicative group of all unitriangular $3\times 3$ matrices of the form $$\left(\begin{array}{ccc} 1&a&b\\ 0&1&c\\ 0&0&1 \end{array}\right),\qquad a,b,c\in\mathbb{Z}/p\mathbb{Z},$$ is nonabelian of exponent $p$, will give examples of $n$-abelian groups any odd $n\gt 2$ (take an odd prime dividing $p$); and for $n=2^a$ with $a\gt 1$, take the dihedral group of order $8$, which has exponent $4$.

Note that a group is $n$-abelian if and only if it is $(1-n)$-abelian: if $(xy)^n = x^ny^n$ for all $x$ and $y$, then $$(ab)^{1-n} = a(ba)^{-n}b = a\left((a^{-1}b^{-1})^n\right)b = aa^{-n}b^{-n}b = a^{1-n}b^{1-n}.$$ Therefore, if $n\lt 0$, then there exist $n$-abelian groups that are not abelian if and only if $1-n\neq 2$, if and only if $n\neq-1$. So in fact the only $n$s for which $n$-abelian coincides with abelian are $n=-1$ and $n=2$.

An interesting related question is:

For which values of $n,m$ is it the case that if a group $G$ is both $n$-abelian and $m$-abelian, then $G$ is necessarily abelian?

As shown in this math.overflow post, this happens if and only if $\gcd(n^2-n,m^2-n)=2$.

Arturo Magidin
  • 417,286
4

One of the 27-element examples admits a simple presentation as a subgroup of $GL_3(\mathbb Z_3)$:$$ G = \left\{\begin{bmatrix}1&x&z\\0&1&y\\0&0&1\end{bmatrix}; x,y,z\in\mathbb{Z}_3\right\} $$ or equivalently the Heisenberg group over $\mathbb{Z}_3$. This is not abelian $$ \begin{bmatrix}1&1&0\\0&1&0\\0&0&1\end{bmatrix}\begin{bmatrix}1&0&0\\0&1&1\\0&0&1\end{bmatrix}=\begin{bmatrix}1&1&1\\0&1&1\\0&0&1\end{bmatrix}\ne\begin{bmatrix}1&1&0\\0&1&1\\0&0&1\end{bmatrix}=\begin{bmatrix}1&0&0\\0&1&1\\0&0&1\end{bmatrix}\begin{bmatrix}1&1&0\\0&1&0\\0&0&1\end{bmatrix} $$ However, it satisfies the desired condition. Observe that for any $x,y,z\in\mathbb{Z}_3$ we have $$ \begin{bmatrix}1&x&z\\0&1&y\\0&0&1\end{bmatrix}^3 = \begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}=I $$ hence for all $a,b\in G$ we trivially have $(ab)^3 = a^3b^3$.