I tried to compute the following integral:
$$
\mbox{For}\quad 0 < a < 1,\qquad
\int_{0}^{\infty}\frac{x^{a - 1}}{1 - x}{\rm d}x
$$
$$
\mbox{We know that}\quad
\int_{0}^{\infty}\frac{x^{a - 1}}{1 - x}{\rm d}x =
\int_{0}^{1}\frac{x^{a - 1}}{1 - x}{\rm d}x +
\int_{1}^{\infty}\frac{x^{a - 1}}{1 - x}{\rm d}x
$$
My strategy is to use the relation between Beta function and Gamma function.
- But, I can't write
$\displaystyle\int_{0}^{1}\frac{x^{a - 1}}{1 - x} {\rm d}x$ as forms of Beta functions:
$$
\operatorname{B}\left(c,d\right) =
\int_{0}^{1}x^{c - 1}\left(1 - x\right)^{d - 1}{\rm d}x
$$
for $\Re\left(c\right)>0,\ \Re\left(d\right) > 0$,
since the condition$\Re\left(d\right) > 0$.
Is there any other method to approch this problem ?. Please help me to solve it. Thank you !.