1

WolframAlpha yields

$$\int_1^\infty u^{-\pi} (u+1)^{-1} du = \frac{1}{2}\psi_0(0.5 + 0.5 π) - \frac{1}{2}\psi_0(0.5π)$$

but does not give an explanation. Does anyone know how to prove this?

1 Answers1

3

$$\lim_{b\to 0}\big(\Gamma(b)-\mathrm{B}(a,b)\big)=\lim_{b\to 0}\frac{\Gamma(b+1)}{\Gamma(a+b)}\frac{\Gamma(a+b)-\Gamma(a)}{b}=\frac{\Gamma'(a)}{\Gamma(a)}=\psi(a)$$ assuming $a,b>0$, which implies $$\psi(b)-\psi(a)=\lim_{c\to 0}\big(\mathrm{B}(a,c)-\mathrm{B}(b,c)\big)=\int_0^1\frac{x^{a-1}-x^{b-1}}{1-x}~dx.$$ The given integral transforms into a particular case of the above after substituting $u=1/\sqrt{x}$.

metamorphy
  • 43,591