We can determine $(c_n)_{n\geq 0}$ by deriving a generating function
\begin{align*}
C(z)=\sum_{n=0}^{\infty}c_nz^n
\end{align*}
$C(n)$ is a rational function and we can derive the denominator of $C(z)$ directly from the recurrence relation
\begin{align*}
c_{n}& - 2c_{n-1} - 5c_{n-2} - c_{n-3} = 0 \quad\quad n \geq 3\\
c_0&=0, c_1=1, c_2=14\tag{1}
\end{align*}
as
\begin{align*}
\color{blue}{C(z)=\frac{a_0+a_1z+a_2z^2}{1-2z-5z^2-z^3}} \tag{2}
\end{align*}
A theorem asserting this relationship is stated here. We calculate the numerator of $C(z)$ by multiplication of (2) with the denominator. We obtain by comparing coefficients:
\begin{align*}
C(z)&\left(1-2z-5z^2-z^3\right)=a_0+a_1z+a_2z^2\\
a_0&=c_0\color{blue}{=0}\\
a_1&=-2c_0+c_1\color{blue}{=1}\\
a_2&=-5c_0-2c^1+c_2=-2+14\color{blue}{=12}\\
\end{align*}
and the generating function $C(z)$ is
\begin{align*}
\color{blue}{C(z)}&\color{blue}{=\frac{z+12z^2}{1-2z-5z^2-z^3}}\tag{3}\\
&\color{blue}{=z+14z^2+33z^3+137z^4+453z^5+\cdots}
\end{align*}
where the last line was calculated with some help of Wolfram Alpha.
Coefficients of $C(z)$: We calculate the coefficients of $C(z)$. We use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series.
We obtain for $n>2$:
\begin{align*}
\color{blue}{c_n}&=[z^n]C(z)\\
&=\left([z^{n-1}]+12[z^{n-2}]\right)\sum_{q=0}^{\infty}z^q\left(2+5z+z^2\right)^q\tag{4}\\
&=\sum_{q=0}^{n-1}[z^{n-1-q}]\left(2+5z+z^2\right)^q\\
&\qquad+12\sum_{q=0}^{n-2}[z^{n-2-q}]\left(2+5z+z^2\right)^q\tag{5}\\
&\color{blue}{=\sum_{q=0}^{n-1}\sum_{{b+2c=n-1-q}\atop{a+b+c=q}}
\binom{n-1-q}{a,b,c}2^a5^b}\\
&\qquad\color{blue}{+12\sum_{q=0}^{n-2}\sum_{{b+2c=n-2-q}\atop{a+b+c=q}}
\binom{n-2-q}{a,b,c}2^a5^b}\tag{6}\\
\end{align*}
Comment:
In (4) we perform a geometric series expansion of $C(z)$ and use $[z^{p-q}]A(z)=[z^p]z^qA(z)$.
In (5) we use again the coefficient of operator rule as in (4).
In (6) we do an expansion using trinomial coefficients.
Calculation of $c_5$: We make a small plausibility check and calculate $c_5$. We obtain from (6)
\begin{align*}
\color{blue}{c_5}&=\left(2\binom{2}{1,0,1}+5^2\binom{2}{0,2,0}
+2^2\cdot 5\binom{3}{2,1,0}+4^2\binom{4}{4,0,0}\right)\\
&\qquad\quad+12\left(\binom{1}{0,0,1}+2\cdot 5\binom{2}{1,1,0}+2^3\binom{3}{3,0,0}\right)\\
&=2\frac{2!}{1!0!1!}+25\frac{2!}{1!1!0!}+20\frac{3!}{2!1!0!}+16\frac{4!}{4!0!0!}\\
&\qquad\quad+12\left(\frac{1!}{0!0!1!}+10\frac{2!}{1!1!0!}+8\frac{3!}{3!0!0!}\right)\\
&=4+25+60+16+12\left(1+20+8\right)\\
&\,\,\color{blue}{=453}
\end{align*}
in accordance with the coefficient of $z^5$ in (3).