For a multi-index $\alpha = \left (\alpha_1, \cdots, \alpha_n \right )$ we write $\left \lvert \alpha \right \rvert = \alpha_1 + \cdots + \alpha_n$ and $\alpha! = \alpha_1! \cdots \alpha_n!.$ For $z = (z_1, \cdots, z_n) \in \mathbb C^n$ and multi-index $\alpha = \left (\alpha_1, \cdots, \alpha_n \right )$ let $z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}.$ Define $e_{\alpha} : \mathbb D \longrightarrow \mathbb C$ by $$e_{\alpha} (z) = \left (\frac {\Gamma \left ( \left \lvert \alpha \right \rvert + n + \gamma + 1 \right )} {\Gamma \left (n + \gamma + 1 \right ) \alpha!} \right )^{\frac {1} {2}} z^{\alpha},$$
where $\gamma > - 1.$ Then find $\sum\limits_{\alpha} e_{\alpha} (z) \overline {e_{\alpha} (w)},$ where the sum is taken over all the multi-indices $\alpha = \left (\alpha_1, \cdots, \alpha_n \right ).$
This sum is actually the expression of the Bergman reproducing kernel of a certain weighted Bergman space. In the paper Compact Toeplitz Operators on Bergman Spaces by K.Stroethoff this sum is claimed to be $\frac {1} {\left (1 - \left \langle z, w \right \rangle \right )^{n + \gamma + 1}}.$
Could anyone shed some light on this fact as to how the sum is of the desired form? Any help would be much appreciated.
Thanks for your time.