Step 1. Note that for any integers $p, q$ with $(p, q) \neq (0, 0)$, the number $\alpha = p\sqrt{2} + q\sqrt{3}$ is irrational. Hence,
\begin{align*}
\frac{1}{N} \sum_{n=0}^{N-1} e^{2\pi i (p\sqrt{2}(x+n) + q\sqrt{3}(x+n))}
&= \frac{e^{2\pi i \alpha x}}{N} \cdot \frac{1 - e^{2\pi i \alpha N}}{1 - e^{2\pi i \alpha}}
\to 0
\end{align*}
as $N \to \infty$. Then by the multi-dimensional Weyl’s Criterion, the empirical measure
$$ \mu_{x,N}(\mathrm{d}x, \mathrm{d}y) = \frac{1}{N} \sum_{n=0}^{N-1} \delta_{(\{ \sqrt{2}(x+n) \}, \{ \sqrt{3}(x+n) \})} $$
converges in distribution to the uniform distribution on $[0, 1]^2$.
Step 2. Now we return to OP's integral. Simplifying,
\begin{align*}
&\frac{1}{N} \int_{0}^{N} \max(\{x\}, \{\sqrt{2}x\}, \{\sqrt{3}x\}) \, \mathrm{d}x \\
&= \frac{1}{N} \sum_{n=0}^{N-1} \int_{0}^{1} \max(x, \{\sqrt{2}(x+n)\}, \{\sqrt{3}(x+n)\}) \, \mathrm{d}x \\
&= \int_{0}^{1} \biggl( \int_{[0,1]^2} \max(x, y, z) \, \mu_{x,N}(\mathrm{d}y, \mathrm{d}z) \biggr) \, \mathrm{d}x.
\end{align*}
By Step 1, for each $x \in [0, 1]$ we know that
$$ \int_{[0,1]^2} \max(x, y, z) \, \mu_{x,N}(\mathrm{d}y, \mathrm{d}z)
\to \int_{[0,1]^2} \max(x, y, z) \, \mathrm{d}y\mathrm{d}z $$
as $N \to \infty$. So by the dominated convergence theorem,
\begin{align*}
&\frac{1}{N} \int_{0}^{N} \max(\{x\}, \{\sqrt{2}x\}, \{\sqrt{3}x\}) \, \mathrm{d}x \\
&\to \int_{0}^{1} \biggl( \int_{[0,1]^2} \max(x, y, z) \, \mathrm{d}y\mathrm{d}z \biggr) \, \mathrm{d}x \\
&= \int_{[0,1]^3} \max(x, y, z) \, \mathrm{d}x\mathrm{d}y\mathrm{d}z.
\end{align*}
This is equal to $\mathbb{E}[\max\{U_1, U_2, U_3\}]$ for IID uniform random variables $U_1, U_2, U_3$ on $[0, 1]$.