In figuring out the number of terms of different order in the adjugate from this question, I stumbled upon this fact:
The numerators for the alternating sum of fractional factorials (https://oeis.org/A053557)
\begin{align} E_{k} = \left\{ 1, 0, \tfrac{1}{2}, \tfrac{1}{3}, \tfrac{3}{8}, \tfrac{11}{30}, \tfrac{53}{144}, \tfrac{103}{280}, \tfrac{2119}{5760}, ... \right\} \end{align} where
\begin{align} E_{k} =\sum _{m=0}^{k}\frac{( -1)^{m}}{m!} \end{align}
... matches the numerators for its cumulative sum (skipping $E_0,E_1$ though, I guess):
\begin{align} F_{k} =\sum _{m=0}^{k} E_{m} \end{align}
\begin{align} F_{k} = \left\{ 1, 1, \tfrac{3}{2}, \tfrac{11}{6}, \tfrac{53}{24}, \tfrac{103}{40}, \tfrac{2119}{720}, \tfrac{16687}{5040}, \tfrac{16481}{4480}, ... \right\} \end{align}
What explains this?