This series is of a different breed in comparison with others you can find in the famous paper Modular equations and approximations to $\pi$ where Ramanujan used elliptic functions to calculate similar series.
Instead, your series appears in the chapter one of Hardy's book: Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work with the number (1.2)
$$ 1-5\left(\frac{1}{2}\right)^3 + 9\left(\frac{1\cdot 3}{2\cdot 4}\right)^3-13\left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^3+... = \frac{2}{\pi} \tag{1.2} $$
In that book Hardy gave a hint of how the formula can be proven:
The series formulae (1.1)-(1.4) I found much more intriguing, and it soon became obvious that Ramanujan must possess much more general theorems and was keeping a great deal up his sleeve. The second (1.2) is a formula of Bauer well known in the theory of Legrende series, but the others are much harder than they look.
Following Hardy's advice, the relation can be proved using the theory of Legendre polynomials.
Consider the Legrende polynomials defined with the Rodrigues’ formula:
$$ P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2-1)^n \tag{1} $$
If $f(x)$ is a very smooth function in $|x|\leq 1$ then it can be expanded in terms of Legendre polynomials:
$$ f(x) = \sum_{n=0}^{\infty} a_nP_n(x) $$
where
$$ a_n = \frac{2n+1}{2} \int_{-1}^{1} P_n(x) f(x) dx $$
Consider function $\displaystyle f(x) = \frac{1}{\sqrt {1-x^2}}$. We will show that this function has the following expansion in Legendre polynomials:
$$ \frac{1}{\sqrt{1-x^2}} = \frac{\pi}{2} \left(1 + 5\left(\frac{1}{2}\right)^2 P_{2}(x) +9\left(\frac{1\cdot 3}{2\cdot 4}\right)^2P_4(x) + 13\left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^2 P_6(x)+... \right) $$
First, we have to calculate the coefficients:
$$a_n = \frac{2n+1}{2} \int_{-1}^{1} \frac{P_n(x)}{\sqrt{1-x^2}}dx \tag{*}$$
This can be proven by induction:
$$ \int_{-1}^1 \frac{P_n(t)dt}{\sqrt{1-t^2} } = \begin{cases}
\displaystyle \pi \left[\frac{(n-1)!!}{n!!}\right]^2 & \quad n=2m , \;\; m\in \mathbb{Z}_{\geq 0}\\
\displaystyle 0 &\quad n=2m+1, \;\; m\in \mathbb{Z}_{\geq0}
\end{cases}$$
For that end, these properties of the Legrende polynomials are needed:
$$ P_n(x) = \frac{2n-1}{n} xP_{n-1}(x) - \frac{n-1}{n} P_{n-2}(x) \tag{2}$$
$$ \frac{d}{dx} P_n(x) = \frac{n}{1-x^2} \left[P_{n-1}(x) -xP_n(x) \right] \tag{3} $$
Base case. $m=0$
By the Rodrigues’ formula:
\begin{eqnarray*}
\int_{-1}^1 \frac{P_0(t)dt}{\sqrt{1-t^2} } &=& \int_{-1}^1 \frac{dt}{\sqrt{1-t^2} }\\
& =& \arcsin(1)-\arcsin(-1) = \pi
\end{eqnarray*}
\begin{eqnarray*}
\int_{-1}^1 \frac{P_1(t)dt}{\sqrt{1-t^2} } &=& \int_{-1}^1 \frac{tdt}{\sqrt{1-t^2} }\\
& =& \left[-\sqrt{1-x^2}\right]_{-1}^1 = 0
\end{eqnarray*}
Inductive step. Suppose this is valid for $m=k$
$$ \int_{-1}^1 \frac{P_n(t)dt}{\sqrt{1-t^2} } = \begin{cases}
\displaystyle \pi \left[\frac{(n-1)!!}{n!!}\right]^2 & \quad n=2k \\
\displaystyle 0 &\quad n=2k+1
\end{cases}$$
We have to prove it for $m=k+1$
From the recurrence formula (2) and the inductive step:
\begin{eqnarray*}
\int_{-1}^1 \frac{P_{2k+2}(t)dt}{\sqrt{1-t^2} } &=& \frac{4k+3}{2k+2}\int_{-1}^1 t\frac{P_{2k+1}(t)dt}{\sqrt{1-t^2} }- \frac{2k+1}{2k+2} \int_{-1}^1 \frac{P_{2k}(t)dt}{\sqrt{1-t^2} } \\
&=& \frac{4k+3}{2k+2}\int_{-1}^1 \frac{tP_{2k+1}(t)dt}{\sqrt{1-t^2} }- \pi \frac{(2k+1)!!}{(2k+2)!!}\frac{(2k-1)!!}{(2k)!!} \\
\end{eqnarray*}
Now integrating by parts and using (3):
\begin{eqnarray*}
\int_{-1}^1 \frac{tP_{2k+1}(t)dt}{\sqrt{1-t^2} } &=& (2k+1)\int_{-1}^1 \sqrt{1-t^2}P'_{2k+1}(t)dt \\
&=& (2k+1)\int_{-1}^1 \frac{P_{ 2k}(t)}{\sqrt{1-t^2}}dt - (2k+1)\int_{-1}^1 \frac{tP_{ 2k+1}(t)}{\sqrt{1-t^2}}dt
\end{eqnarray*}
Hence, by the inductive step:
\begin{eqnarray*}
\int_{-1}^1 \frac{tP_{2k+1}(t)dt}{\sqrt{1-t^2} } &=& \frac{ (2k+1)}{(2k+2)} \int_{-1}^1 \frac{P_{ 2k}(t)}{\sqrt{1-t^2}}dt = \pi \frac{(2k+1)!!}{(2k+2)!!} \frac{(2k-1)!!}{(2k)!!}
\end{eqnarray*}
Therefore:
\begin{eqnarray*}
\int_{-1}^1 \frac{P_{2k+2}(t)dt}{\sqrt{1-t^2} } &=& \frac{4k+3}{2k+2}\int_{-1}^1 t\frac{P_{2k+1}(t)dt}{\sqrt{1-t^2} }- \frac{2k+1}{2k+2} \int_{-1}^1 \frac{P_{2k}(t)dt}{\sqrt{1-t^2} } \\
&=& \pi \frac{(4k+3)}{(2k+2)} \frac{(2k+1)!!}{(2k+2)!!} \frac{(2k-1)!!}{(2k)!!} - \pi \frac{(2k+1)!!}{(2k+2)!!}\frac{(2k-1)!!}{(2k)!!} \\
&=& \pi \left[ \frac{(2k+1)!!}{(2k+2)!!}\right]^2
\end{eqnarray*}
In a similar way you can show as an exercise that
\begin{eqnarray*}
\int_{-1}^1 \frac{P_{2k+3}(t)dt}{\sqrt{1-t^2} } &=& 0
\end{eqnarray*}
Hence, from (*) we have:
$$ a_{2m} = \frac{(4m-1)\pi}{2} \left[\frac{(2m-1)!!}{(2m)!!}\right]^2 $$
$$ a_{2m+1} =0$$
Then, we have proved:
$$ \frac{1}{\sqrt{1-x^2}} = \frac{\pi}{2} \left(1 + 5\left(\frac{1}{2}\right)^2 P_{2}(x) +9\left(\frac{1\cdot 3}{2\cdot 4}\right)^2P_4(x) + 13\left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^2 P_6(x)+... \right) $$
If $x=0$.
$$ \frac{2}{\pi} =1 + 5\left(\frac{1}{2}\right)^2 P_{2}(0) +9\left(\frac{1\cdot 3}{2\cdot 4}\right)^2P_4(0) + 13\left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^2 P_6(0)+... $$
by the recurrence formula (2) with $x=0$ :
$$ P_{2m}(0) = -\frac{2m-1}{2m} P_{2m-2}(0) $$
Iterating
$$ P_{2m}(0) = (-1)^{m}\frac{(2m-1)}{2m}\frac{(2m-3)}{(2m-2)}\cdots \frac{1}{2} = (-1)^{m} \frac{(2m-1)!!}{(2m)!!}$$
Finally
$$ \frac{2}{\pi}= 1-5\left(\frac{1}{2}\right)^3 + 9\left(\frac{1\cdot 3}{2\cdot 4}\right)^3-13\left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^3+... $$